April 1, 1960

HIGH TEMPERATURE GUARD RING FISSION CHAMBER 7657

The 7657 fission chamber is designed to detect thermal neutrons in the range of 1.4 to 1.4×10^5 neutrons/cm²/second. The detector is extremely rugged in construction designed to pass MIL-S-901 for shock and MIL-Std-167 (Type 1) for vibration. The 7657 is of guard ring construction, a feature which minimizes electrical leakage across the internal insulators, and it may be operated in any position at temperatures up to 500° F.

The 7657 is constructed of aluminum, with high purity alumina ceramic insulators throughout, including those used in the type HN coaxial connectors. In typical operation, the counter has a thermal neutron sensitivity of 0.7 counts/neutron/cm² throughout a wide range of applied voltage.

ECHANICAL:		
Maximum Diameter	3-1/32	Inches
Maximum Overall Length	13-3/4	Inches
Approximate Sensitive Length	7-1/2	Inches
Net Weight	2-1/2	Pounds
Shipping Weight	10	Pounds
ATERIALS:		
Element Body		Aluminum
Electrodes		Aluminum
Insulation	li-purity Al	umina Ceramic
Content U30g Enriched t	a more tha	n 90% in U-235
Thickness		2 mg/cm ²
Total Quantity , . ,		1.72 grams
Gas Filling	Argon-N	itrogen Mixture
Gos Pressure		76 Cm of Hg
IPEDANCE:	_	
Resistance at 500°F (minimum)	70 ⁹	Ohms
Capacitance:		
Signal Electrode to Case (approx.)	225	μμί
High Voltage Electrode to Case (approx	k.) 160	$\mu\mu$ f
AXIMUM RATINGS;		
Voltage Between Electrodes	1000	Volts
Temperature	500	۰F
External Pressure (Note 2)	180	Pounds/Inch2
Thermal Neutron Flux	10 1 1	πv
YPICAL OPERATION: (Note 1)		
Operating Voltage	300	Volts
Operating Voltage Plateau (See Figure 2		Volts
Thermal Neutron Flux Range 1,4 to	1,4 × 10 ⁵	nv
Sensitivity (Note ?)	0.7	cps/nv
Output Pulse Characteristics:		
Output I bise Citaracionisines.	2×10^{-4}	Volts
Amplitude (Unloaded)	2×10^{-7}	Seconds

- The sensitivity is 0.7 counts/neutron/cm² when the alpha background counting rate of the naturally radioactive uranium is adjusted to 5 counts/second. By varying the pulse height selector on the associated circuitry other sensitivities are available. See Figure 1, also the section entitled "Fission Counter Operation".
- 2. The pressurizing atmosphere must be dry and non-corrosive.

Neutron & Radiation Detection Section

COUNTER SENSITIVITY AS FUNCTION OF PULSE HEIGHT SETTING

FIGURE 1

Page 3

COUNTING RATE CHARACTERISTIC

FIGURE 2