TYPE 7498: HIGH SLOPE R.F. PENTODE.

The 7498 is a seven pin all glass construction pentode for use in R.F. and I.F. applications.

The use of a special rugged electrode construction manufactured by means of semi-automatic assembly techniques contributes to a low catastrophic failure rate.

The cathode sleeve is made of a special alloy to inhibit the growth of cathode interface resistance during long periods of operation under cut-off conditions and the pure tungsten heater has been designed to withstand frequent heater switching (see note). In addition the heater-cathode construction and materials ensure very low levels of leakage throughout life.

The glass base and envelope strain patterns are tightly controlled during manufacture to prevent glass failures during life. Special attention is also given to the control of materials and processes to minimise variation of characteristics during life. A particular feature is the very low change in inter-electrode capacitances during life.

NOTE: A sample from each production lot is tested under the following elevated conditions to assess heater quality:-- heater voltage 120% of nominal value: heater-cathode voltage 240V r.m.s: applied voltages cycled 1 minute on, 3 minutes off for 100 hours.

MECHANICAL DATA

Coated unipotential cathode.
Outline drawing 5-2 Bulb 7-5/2
Base E7-1 Small button 7 pin
Maximum diameter 23/4"
Maximum overall length 21/8"
Maximum seated height 13/8"
Pin connections Basing 7DB

Pin 1 - Grid No. 1
Pin 2 - Cathode
Pin 3 - Heater
Pin 4 - Heater
Pin 5 - Anode
Pin 6 - Grid No. 3 and shield
Pin 7 - Grid No. 2

Mounting position any
Maximum shock (intermittent service) 500g

from JEDEC release #3211, April 3, 1961
ELECTRICAL DATA

Interelectrode capacitances. (Measured with external shield)

\[C_{an} = 0.01 \text{ pF (max)} \]
\[C_{in} = 7.6 \text{ pF} \]
\[C_{out} = 3.25 \text{ pF} \]

Heater:

Voltage (ac or dc) 6.3 volts
Current 0.3 amps.

Ratings - Absolute Maximum values.

Maximum heater voltage variation \[\pm 5\% \text{ of nominal value} \]
Heater negative with respect to cathode 150 volts
Heater positive with respect to cathode 150 volts
Maximum anode voltage \(I_a = 0 \) 550 volts
Maximum anode voltage \(I_g = 0 \) 300 volts
Maximum anode dissipation 3.0 watts
Maximum screen voltage \(I_g = 0 \) 450 volts
Maximum screen voltage 300 volts
Maximum screen dissipation 0.9 watts
Maximum bulb temperature (at hottest spot on bulb surface) 200 °C

RANGE OF CHARACTERISTIC VALUES FOR EQUIPMENT DESIGN (At Zero hours)

Test conditions \(V_a = 250V, V_{g3} = 0, V_{g2} = 250V, V_{gl} = 0 \)
\(R_x = 160 \Omega \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Peggy</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode current</td>
<td>7.5</td>
<td>9.35</td>
<td>12.2</td>
</tr>
<tr>
<td>Screen current</td>
<td>1.8</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Mutual conductance</td>
<td>6.0</td>
<td>7.62</td>
<td>9.25</td>
</tr>
<tr>
<td>Anode current at (V_{gl} = 8V)</td>
<td>100</td>
<td>(\mu)A</td>
<td></td>
</tr>
<tr>
<td>Inner amplification factor</td>
<td>60</td>
<td>75</td>
<td>89</td>
</tr>
</tbody>
</table>

Maximum value of cathode interface resistance throughout life under cut-off conditions \[10\Omega \]