DESCRIPTION:

The F-7423 is a 5 inch Iatron (Direct View Storage Cathode-Ray Tube) that produces a bright visual display of electrically stored information. It is electrostatically focused and deflected. The tube displays bright images that can be viewed in direct daylight, and the tube features the ability to write, store and erase signal information at the will of the operator. Gray shades are produced in accordance with the amplitude variations of the input signal. The tube has two electron guns, a writing gun which writes the input signal on an insulator storage screen, and a flood gun which illuminates the phosphor in accordance with the stored signal.

GENERAL:

Dimensions
Nominal Tube Diameter
Minimum Useful Display Diameter
Phosphor
Operating Position
Weight (approximate)
Cathode Pre-Heating Time
Focus Method
Deflection Method

See Outline Attached
5 Inches
4 Inches
P-20 Aluminized
Any
2 lb. 8 oz.
30 Seconds
Electrostatic
Electrostatic

MAXIMUM RATINGS:

Viewing Screen
Backing Electrode
Collector
Anode #4
Anode #3
Anode #2
Anode #1
Heater-Cathode Voltage

#10 KV
#25 V
#250 V
#150 V
#150 V
#150 V
#80 V
#125 V

* Trademark of International Telephone and Telegraph Corporation
WRITE SECTION

WRITE CATHODE
GRID #1 NEGATIVE VOLTAGE RESPECT WRITE CATHODE 150 V
 POSITIVE VOLTAGE RESPECT WRITE CATHODE 0 V
GRID #2 150 V
GRID #3 500 V RESPECT WRITE CATHODE
HEATER-CATHODE VOLTAGE 125 V
GRID #2 to ANY DEFLECTING ELECTRODE 500 V

TYPICAL OPERATING VALUES:

FLOOD SECTION

VIEWING SCREEN 8.5 KV DC 2 MA (Max.)
BACKING ELECTRODE 10 VDC
COLLECTOR 180 VDC 2 MA (Max.)
ANODE #4 90 VDC 1.5 MA (Max.)
ANODE #3 20 VDC 1.5 MA (Max.)
ANODE #2 30 VDC 1.8 MA (Max.)
ANODE #1 60 VDC 5.0 MA (Max.)
FLOOD CATHODE 0 VDC 10.0 MA (Max.)
HEATER 6.3 V AC OR DC 1.4 A

WRITE SECTION

WRITE CATHODE -750 VDC 3.0 MA (Max.)
GRID #1 CUTOFF (Note 1) -60 VDC RESPECT WRITE CATHODE
GRID #2 0 VDC
GRID #3 165 VDC RESPECT WRITE CATHODE
HEATER 6.3 V AC OR DC .6 A
MEAN DEFLECTION PLATE VOLTAGE 0 V

RANGE OF TYPICAL OPERATING ADJUSTMENTS:

- ANODE #2 25 TO 35 VDC ADJUST FOR BEST COLLIMATION
- ANODE #3 15 TO 30 VDC ADJUST FOR BEST COLLIMATION
- GRID #1 CUTOFF 40 TO 85 VDC (Note 1)
- GRID #3 FOCUS 105 TO 210 VDC ADJUST FOR BEST FOCUS
- ERASE PULSES 0 TO 10 VOLT AMPLITUDE, 1 USECOND WIDE, 100-5000 PRF - ADJUST FOR DESIRED VIEWING TIME.

* TRADEMARK OF ITT
TYPICAL PERFORMANCE:

Resolution (Note 2)
50% of Full Brightness 40 Lines/Inch
Brightness 4,000 Ft. Lamberts
Writing Speed
20 Volt Drive to 50% Brightness 20,000 Inches/Second
40 Volt Drive to 50% Brightness 40,000 Inches/Second
Erase Time (Note 3) 12 Milliseconds
Viewing Time (Note 4) 10 Seconds
Storage Time (Note 5) 20 Seconds
Deflection Factor
D1-D2 40-49 Volts/Inch
D3-D4 38-47 Volts/Inch
Half-tone Steps 4 (Minimum)

ENVIRONMENTAL DATA:

Ambient Temperature Range
Operating -55° to 71° C
Non-operating -65° to 100° C
Altitude 70,000 Feet
Vibration (Continuous) 3G, 5 Cps to 500 Cps
Shock (3 axes)
Operating 15G for 40 Ms, 18 impacts
Non-operating (Crash Safety) 30G for 11 Ms, 2 impacts

NOTES:

1. Visual cutoff of the stored, focused, undeflected spot.

2. Resolution is measured by the shrinking raster method at the center of the tube.

3. Erase time is the shortest time in which a signal can be removed from the tube after being stored at full brightness.

4. Viewing time is the minimum time that a signal stored at full brightness anywhere in the display areas can be viewed with erase pulses continuously applied to counteract ion writing.

* Trademark of ITT
5. Storage time is the time required for the brightness to increase from cutoff to 50 per cent of full value in the absence of erase pulses.

SPECIAL PRECAUTIONS:

Observe maximum ratings to avoid possible damage to the tube. In particular the viewing screen voltage should be limited so as to never exceed 10 KV. The full voltage should not be applied to the viewing screen instantaneously. An ordinary RC filter at the output of the power supply will provide adequate assurance that the voltage build up will not be too abrupt. The minimum resistance of the high voltage circuit should be 1 meg ohm.

Repeated bombardment with a high current focused writing beam on a small area of the storage surface can burn a dark image into the display area, which may remain for several hours or even permanently. Therefore, deflection voltages should be applied before operating the writing beam.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section
ITT Components Division
Post Office Box 412
Clifton, New Jersey

* Trademark of the International Telephone & Telegraph Corporation
Note 1: Deflecting electrodes D₁, D₂ are nearer the screen; deflecting electrodes D₃, D₄ are nearer the base with D₁ positive with respect to D₂. The spot will be deflected toward pins No. 9 and 10; likewise with D₃ positive with respect to D₄. The spot will be deflected toward pin No. 6.

Note 2: The spot shall fall within a circle of 0.2 inch radius centered 0.6 inches above the center of the tube face.

F-7423 IATRON OUTLINE