CHATHAM ELECTRONICS
Division of Gera Corporation – LIVINGSTON, NEW JERSEY
6394
LOW-MU TWIN POWER TRIODE
HIGH PERVEANCE - HIGH PLATE DISSIPATION
TENTATIVE DATA

Chatham 6394 is a low-mu, high perveance, twin power triode of the heater-cathode type intended for use as a regulator tube in dc power supply units. The 6394 features a plate current held within ±10% of bogie (Note 2) and absence of plate current drift. A hard glass envelope is used to withstand shock and high temperature. The 6394 employs a compact design in which special attention has been given to features which improve its strength both as to shock and vibration. This type utilizes a button stem which strengthens the mounting structure and provides relatively wide inter-lead spacing. Because of this spacing between leads, susceptibility to electrolysis is reduced. These features all contribute to the dependability of the 6394.

GENERAL DATA

Heater, for Unipotential Cathodes:
Voltage (AC or DC)............................ 26.5±10% volts
Current at 26.5 volts............................ 1.2 amp
Direct Inter-electrode Capacitances (Each Unit, without external shield):
Grid to Plate.................................... 15.2 uuf
Input... 13.7 uuf
Output.. 4.7 uuf
Heater to Cathode:
Triode Unit No. 1............................... 27.8 uuf
Triode Unit No. 2............................... 26.8 uuf
Grid of Unit No. 1 to Grid of
Unit No. 2..................................... 0.68 uuf
Plate of Unit No. 1 to Plate of
Unit No. 2..................................... 1.5 uuf

Characteristics (Each Unit):
Plate-Supply Voltage........................... 190 volts
Cathode-Bias Resistor.......................... 200 ohms
Amplification Factor........................... 2.7
Plate Resistance................................. 200 ohms
Transconductance.............................. 13,500 umhos
Plate Current.................................. 185 ma

Mechanical:
Mounting Position................................ Any
Maximum Overall Length......................... 4 3/4"
Maximum Seated Length.......................... 4 1/4"
Maximum Diameter.............................. 2"
Bulb... 30/16 Nanex
Base... Short Jumbo-Shell Octal 8-Pin
Shock... 30° Hammer angle or 500 G's
High Altitude.................................... 10,000 Ft.
Weight (net)..................................... 4.5 oz. Max.

DC AMPLIFIER
Values are for Each Unit
Maximum Ratings, Absolute Values
PLATE VOLTAGE............................... 400 max. volts
PLATE CURRENT............................... 400 max. ma
PLATE DISSIPATION............................ 30 max. watts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode 300 max. volts
Heater positive with respect to cathode 300 max. volts
BULB TEMPERATURE @......................... 250 max. °C
MAXIMUM CIRCUIT VALUES:
Grid-Circuit Resistance: 500 min. 500 K max. ohms
Cathode Resistance: Minimum cathode resistance per cathode leg shall be 27 ohms or that resistance necessary to provide 10% of the grid bias voltage, whichever is the greater.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current</td>
<td>1</td>
<td>1.15</td>
</tr>
<tr>
<td>Grid-Plate Capacitance (Each Unit)</td>
<td>13.7</td>
<td>16.7</td>
</tr>
<tr>
<td>Input Capacitance (Each Unit)</td>
<td>11.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Output Capacitance (Each Unit)</td>
<td>4.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>
| Heater-Cathode Capacitance:
 Triode Unit No. 1 | 23.8 | 31.8 | uuf |
 Triode Unit No. 2 | 22.8 | 30.8 | uuf |
| Amplification Factor (Each Unit) | 1.2, 4 | 2.0 | 3.4 | |
| Plate Current (Each Unit) | 1.2, 4 | 165 | 200 | ma |
| Transconductance (Each Unit) | 1.2, 4 | 11,000 | 16,000 | umhos |
| Reverse Grid Current (Each Unit) | 1.3, 4 | 4.0 | 4.0 | uamp |

Note 1: With 26.5 volts ac or dc on heater.
Note 2: With plate-supply voltage of 190 volts, and cathode bias resistor of 200 ohms in each cathode (both triode units operating).
Note 3: With plate-supply voltage of 190 volts, and grid resistor of .5 megalohm in each grid (both triode units operating).
Note 4: Readings to be taken after tube has been drawing current for at least 5 minutes.
@ At hottest point on bulb surface

OPERATING NOTES

A minimum warm-up time of 30 seconds before application of plate voltage is recommended. This is especially necessary in regulator circuits where the plate of the amplifier tube ties back to the plate side of the passing tube. In such a circuit during warm-up, the passing tube grid is essentially at plate potential resulting in a momentary grid bias of several hundred volts positive. This will strip the barium from the surface of the cathode leaving the tube with little or no emission. Tubes that have been abused this way can be re-aged by running them for several hours with filament voltage only applied, and with Ef=30v. (Continued)

from JETEC release #1768, Oct. 29, 1956
The maximum ratings in the tabulated data for the 6394 are limiting values above which the serviceability of the 6394 may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual condition of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

DIMENSIONAL OUTLINE

TWIN POWER TRIODE 6336-6394

Average Plate Characteristics For Each Triode Unit of Type 6394

SOCKET CONNECTIONS

- Pin 1: Grid of Unit No. 2
- Pin 2: Plate of Unit No. 2
- Pin 3: Cathode of Unit No. 2
- Pin 4: Grid of Unit No. 1
- Pin 5: Plate of Unit No. 1
- Pin 6: Cathode of Unit No. 1
- Pin 7: Heater
- Pin 8: Heater

6336 = $E_1 = 6.3\text{ Volts}$

6394 = $E_2 \leq 26.5\text{ Volts}$

Suggested cathode resistance per leg at various operating points.

* Minimum point is dependent on input voltage ripple and plate return circuit of amplifier tube.