DESCRIPTION AND RATING

KLYSTRON

GL-6237 GL-6238 GL-6239 GL-6240 GL-6241 GL-6242

<table>
<thead>
<tr>
<th>Tube Type</th>
<th>Frequency Range Megacycles</th>
<th>Television Channel Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-6237</td>
<td>470 - 530</td>
<td>14 - 23</td>
</tr>
<tr>
<td>GL-6238</td>
<td>530 - 590</td>
<td>24 - 33</td>
</tr>
<tr>
<td>GL-6239</td>
<td>590 - 656</td>
<td>34 - 44</td>
</tr>
<tr>
<td>GL-6240</td>
<td>656 - 728</td>
<td>45 - 56</td>
</tr>
<tr>
<td>GL-6241</td>
<td>728 - 806</td>
<td>57 - 69</td>
</tr>
<tr>
<td>GL-6242</td>
<td>806 - 890</td>
<td>70 - 83</td>
</tr>
</tbody>
</table>

These tubes are three-resonator tunable klystrons for use as radio-frequency amplifiers. They cover the UHF television band, 470 to 890 megacycles, and each type will provide 12 kilowatts of power output at synchronizing peak level with a power gain of approximately 200 in broadband visual-amplifier service. Broadband operation is obtained by stagger-tuning the input and output resonators on the low side of the center frequency and the center resonator on the high side.

The tubes have unipotential tantalum disk-type cathodes heated by bombardment, collectors capable of dissipating 51 kilowatts, and require electro-magnetic focusing of the electron beam. The cathode seals and the output seals are forced-air cooled; the drift tubes and the collectors are water cooled. There will be two basic resonator diameters for the six types.

PRELIMINARY TECHNICAL INFORMATION

GENERAL

Electrical

<table>
<thead>
<tr>
<th></th>
<th>Bogey</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage *</td>
<td>6.3</td>
<td>Volts</td>
</tr>
<tr>
<td>Heater Starting Voltage</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Heater Current at 6.3 Volts</td>
<td>38</td>
<td>Amperes</td>
</tr>
<tr>
<td>Heater Current at 8 Volts</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Heater Starting Current</td>
<td>100</td>
<td>Amperes</td>
</tr>
<tr>
<td>Heater Cold Resistance</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Cathode Bombarder Voltage</td>
<td>2.4</td>
<td>Kilovolts</td>
</tr>
<tr>
<td>Cathode Bombarder Current</td>
<td>460</td>
<td>Milliamperes</td>
</tr>
<tr>
<td>Cathode Bombarder Input</td>
<td>1200</td>
<td>Watts</td>
</tr>
<tr>
<td>Cathode Heating Time †</td>
<td>3</td>
<td>Minutes</td>
</tr>
<tr>
<td>Magnetic Field, approximate range ‡</td>
<td>300 to 400</td>
<td>Gausses</td>
</tr>
</tbody>
</table>

Mechanical

Mounting Position - Vertical-Collector End Up

Water Flow

Collector	15 Min	Gallons per Minute
Pressure Drop at Rated Flow, approximate	65	Pounds per Square Inch
Drift Tubes	2 Min	Gallons per Minute
Pressure Drop at Rated Flow, approximate	65	Pounds per Square Inch
Water Pressure	80 Max	
Outlet Water Temperature	70 Max	C

Air Flow

Cathode and Heater Seals	300 Min	Cubic Feet per Minute
Output Seals	15 Min	Cubic Feet per Minute
Glass Temperature	150 Max	C
Maximum Over-all Length, approximate	4 1/2 to 5	Feet
Maximum Over-all Diameter	21 1/2	Inches
Net Weight, approximate $	180 to 280	Pounds
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Radio-frequency Amplifier - Broadband Television Service

Synchronizing-level conditions per tube unless otherwise specified

Maximum Ratings, Absolute Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-c Beam Voltage</td>
<td>18 Max Kilovolts</td>
</tr>
<tr>
<td>D-c Beam Current</td>
<td>3.25 Max Amperes</td>
</tr>
<tr>
<td>Collector Dissipation</td>
<td>51 Max Kilowatts</td>
</tr>
<tr>
<td>Drift Tube Collection Current</td>
<td>250 Max Milliamperes</td>
</tr>
<tr>
<td>Driving Power</td>
<td>150 Max Watts</td>
</tr>
</tbody>
</table>

Typical Operation - Bandwidth 6 Megacycles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-c Beam Voltage</td>
<td>17 Kilovolts</td>
</tr>
<tr>
<td>D-c Beam Current Δ</td>
<td>2.5 to 3 Amperes</td>
</tr>
<tr>
<td>Driving Power</td>
<td>60 Watts</td>
</tr>
<tr>
<td>Pedestal Level</td>
<td>33.7 Watts</td>
</tr>
<tr>
<td>Power Output</td>
<td></td>
</tr>
<tr>
<td>Synchronizing Level</td>
<td>15 Kilowatts</td>
</tr>
<tr>
<td>Synchronizing Level</td>
<td>12 Kilowatts</td>
</tr>
<tr>
<td>Pedestal Level</td>
<td>6.72 Kilowatts</td>
</tr>
</tbody>
</table>

* The bogey value is the approximate value of bombarder heater voltage required to furnish just sufficient bombarder current which with a bombarder voltage of 2400 volts maintains the main cathode at an operating temperature adequate to furnish a beam current of 3 amperes. To avoid excessively long cathode-heating time the heater voltage should be started at approximately 8 volts and gradually reduced to the normal operating value as the cathode reaches the proper operating temperature. Voltage stability of the heater and bombarder supplies is important to prevent fluctuation in beam current.

† Approximate time required to permit normal operation. Beam voltage may be applied earlier.

‡ The magnetic field required will vary with the type and the channel to which the tube is tuned. It ranges between 300 and 400 gauss. Three independently regulated electromagnets around the body assembly and one around the cathode structure are required for proper electron-beam focusing. Details regarding the design and positioning of these magnets will be found in the Installation and Operation Instructions.

§ Approximate Weights

GL-6237	280 Pounds
GL-6238	280 Pounds
GL-6239	280 Pounds
GL-6240	180 Pounds
GL-6241	180 Pounds
GL-6242	180 Pounds

△ The amount of beam current for a given beam voltage and power output will be approximately 2.5 amperes for the GL-6237 and will range up to 3 amperes for the GL-6242 since efficiency decreases somewhat at the higher frequencies.

γ Saturation power level is the maximum radio-frequency power level which the tube will deliver for a given beam input power. Under operating conditions for a 15-kilowatt saturation level, the power output versus driving power characteristic is linear enough to permit application in video television up to a 12-kilowatt synchronizing peak level with a moderate amount of synchronizing peak pre-emphasis in the driver stage.