The type RK6236 is a reflex velocity variation oscillator designed for use with a coaxial cavity in CW or pulsed operation over the 3800 to 7600 Mc range with an average power output of 125 milliwatts. Freely circulating and in some cases forced air is required for cooling of the grid ring cavity contacts. The extremely wide frequency range of this tube makes it ideally suited for signal generator and special local oscillator applications. A special control electrode facilitates low-voltage, pulsed modulation.

GENERAL CHARACTERISTICS

ELECTRICAL

Heater Characteristics
- Heater Voltage: 6.3 ±0.5V
- Heater Current: 0.58 A

Ratings — Absolute Maximum Values
- Resonator Voltage: 1250 Vdc
- Resonator Current: 20 mA_d
- Reflector Voltage
 - Minimum Negative Value: −15 Vdc
 - Maximum Negative Value: −800 Vdc
- Control Electrode Voltage: ±25 V
- Control Electrode Current: 6 mA
- Reflector Current: 1 mA_d
- Heater Cathode Voltage: ±50 V
- Dissipation (Exclusive of Heater Power): 25.5 W
- Temperature of G_c Sleeve: 150°C

Typical Operating Conditions (CW)
- Coaxial Cavity as per Fig. 2
- Reflector Voltage Transit Mode: 2 3/4 cycles
- Cavity Mode: 3/4
- Frequency Range: 3800–7600 Mc
- Resonator Voltage: 1000 Vdc
- Reflector Voltage (Exclusive of Control Electrode Current): 20 mA_d
- Reflector Voltage: 0 mA
- Control Electrode Voltage: ±4 to +18 Vdc
- Control Electrode Current: 5 mA (max.)
- Control Electrode Cutoff Voltage: −8 to −23 Vdc
- Electronic Tuning (Half Power): 12 Mc (min.)

*Adjusted for maximum power output.
†Adjusted for 20 milliamperes resonator current.
‡Change in frequency between the two ½ power points when the reflector voltage is varied above and below the point of maximum power output corresponding to the given frequency.
VELOCITY VARIATION OSCILLATOR

Reflector Modulation Sensitivity @ 7500 Mc: 0.1 Mc/Volt
Power Output (Minimum): 90 mW
Power Output (Maximum): 150 mW
Power Output (Average): 100 mW
Thermal Compensation (Tube Without Cavity): 0.1 Mc/°C

Typical Operating Conditions (Pulsed)
- Pulse Repetition Rate: 40-4000 pps
- Pulse Duration (Minimum): 0.5 μs
- Rise Time: 0.1 μs
- Fall Time: 0.1 μs
- Beam Current During Off Time: 10 μA

The general conditions for pulsed operation are the same as those given above for CW operation. Power output for pulsed operation will not be less than 1.5 dB below the power output for CW operation over the band.

General Mechanical Characteristics
- Mounting Position: Any
- Over-all Dimensions: See Outline Drawing
- Envelope: Glass
- Seals: Glass to Copper Oxide
- Banana Jack: Required Ucrite #152005
- Mating Plug or Equivalent: Special Miniature 4 Pin, Fits Amphenol #78-545 Socket.
- Base: Special
- Vibration: 10 G @ 50 cps
- Altitude: 50,000 ft (max.)

DETAILED ELECTRICAL INFORMATION

REFLECTOR
The reflector electrode is connected to the small banana jack on the top of the tube. Reflector voltages more positive than —15 volts with respect to the cathode may result in damage to the tube. Under conditions of vigorous oscillation and light loading, excessive reflector current may be drawn (in the order of one milliampere) on the long wavelength of the band. No damage will result, however, except in cases where the heavy reflector current flowing in a high reflector circuit impedance causes the reflector potential to swing increasingly positive with respect to the cathode. Where high reflector circuit impedances are used, it is advisable to shunt the reflector and cathode with a small diode to prevent the reflector from swinging positive.

CATHODE
In most applications, the metal cavity used with the RK6236 is operated at ground potential, and the cathode will be negative with respect to ground by the amount of this resonator potential. The cathode may be connected to one side of the heater or to the center tap of the heater transformer secondary. When the cathode and heater are connected together, connections to the cathode should be made directly to the cathode contacts on the tube socket and never to a heater lead. When the cathode and heater are not tied together, the heater-cathode voltage should not exceed ±50 volts. In all cases where the resonator is operated at ground potential, the heater transformer must be insulated to withstand the maximum resonator voltage. Maximum tube life will be realized if a 30-second heater warmup period precedes the application of other voltages. The beam potential must never be applied before any other voltages.

CONTROL ELECTRODE
In applications where the RK6236 is to be used in both CW and pulsed operation, the circuit in Fig. 1 is recommended. With the selector switch in the CW position, the 6J6 is effectively out of the circuit and the bias on the RK6236 is set at a value that will yield a 20-milliampere beam current. With the selector set at the pulsed position, the 6J6 shunts the lower portion of the potentiometer and the volt-
VELOCITY VARIATION OSCILLATOR

Type RK6236

AGE DIVISION IS SUCH THAT THE RK6236 IS BIASED TO
CUTOFF. A NEGATIVE PULSE OF SUITABLE AMPLITUDE
APPLIED TO THE GRID OF THE 6J6 WILL DRIVE IT TO CUTOFF
AND RESTORE THE GRID OF THE RK6236 TO THE LEVEL SET
FOR CW OPERATION.

ELECTRONIC TUNING

VERNIER ADJUSTMENT OF THE FREQUENCY OF THE
RK6236 IS ACCOMPLISHED BY VARYING THE REFLECTOR
VOLTAGE. IF THE MECHANICAL TUNING MECHANISM
EMPLOYED IN THE EXTERNAL CAVITY AND THE REFLECTOR
VOLTAGE ARE MUTUALLY ADJUSTED TO YIELD A MAXIMUM
POWER OUTPUT AT A GIVEN FREQUENCY, AND IF THEN THE
REFLECTOR VOLTAGE IS VARIED ABOVE AND BELOW THE
VALUE FOR MAXIMUM POWER SUCH THAT THE POWER
OUTPUT IS REDUCED TO ONE HALF, THE FREQUENCY CHANGE
BETWEEN THE HALF POWER VALUES IS DEFINED AS THE
ELECTRONIC TUNING RANGE. THE RANGE OF ELECTRONIC
TUNING AND THE LINEARITY OF ITS VARIATION WITH REFLEC-
TOR VOLTAGE IS A FUNCTION OF THE TYPE OF LOAD AND
COUPLING USED. MAXIMUM ELECTRONIC TUNING RANGE
WILL BE ACHIEVED WITH OPERATION INTO A RESISTIVE LOAD.
OPERATION INTO A HIGHLY REACTIVE LOAD MAY BE
ATTENDED BY EXCESSIVE HYSTERESIS, AND NON-
LINEAR VARIATION OF FREQUENCY WITH REFLECTOR VOLTAGE.

FREQUENCY STABILITY

THE REGULATION OF THE VOLTAGES APPLIED TO THE
REFLECTOR, RESONATOR, AND CONTROL GRID WILL BE REF-
LECTED DIRECTLY IN THE STABILITY OF THE OUTPUT FRE-
QUENCY. HENCE, THE REGULATION OF THOSE VOLTAGE
SUPPLIES MUST BE COMMENSURATE WITH THE STABILITY
REQUIREMENTS OF THE APPLICATION.

THE THERMAL FREQUENCY DRIFT EXPERIENCED WITH
THE RK6236 DEPENDS MAINLY ON THE CHANGES IN
PHYSICAL SIZE OF THE RESONANT CHAMBER WITH TEM-
PERATURE. THE RK6236 IS TEMPERATURE-COMPENSATED
SO THAT THERMAL COEFFICIENT OF FREQUENCY DRIFT WILL
NOT EXCEED 0.1 Mc/°C WHEN OPERATING IN A CONSTANT
SIZE CAVITY. THE AMOUNT BY WHICH THE FREQUENCY
DRIFT EXCEEDS 0.1 Mc/°C IS THEREFORE DEPENDENT
ONLY ON THE THERMAL PROPERTIES OF THE CAVITY. CARE-
FUL CONSIDERATION SHOULD BE GIVEN TO THE MATERIAL
FROM WHICH THE EXTERNAL CAVITY IS CONSTRUCTED.

MODE OF OPERATION

THE RK6236 IS DESIGNED FOR OPERATION WITH CON-
TACTING OR NONCONTACTING PLUNGER-TYPE COAXIAL CAV-
ITIES OVER THE 3800 TO 7600 Mc BAND IN THE 2¼
REFLECTOR MODE. DESIGN AND CONSTRUCTION OF THE
ABOVE-MENTIONED CAVITIES CAN BE EXTREMELY TRO-
UBLE-SOME, AND CERTAIN DESIGN PRECAUTIONS MUST BE
OBSERVED TO AVOID INTERFERENCE FROM CIRCUMFERNENTIAL
RESONANCES, ONE-QUARTER WAVELENGTH MODES, AND
MULTIFREQUENCY BUNCHING. AN EXTENSIVE TREAT-
MENT OF THE DESIGN OF WIDE-RANGE COAXIAL CAVITIES
IS BEYOND THE SCOPE OF THIS PUBLICATION; HOWEVER,
THE FOLLOWING REFERENCES CONTAIN ADEQUATE INFOR-
MATION PERTINENT TO THEIR DESIGN.

2. W. H. Huggins. "Broad Band Non-Contacting Short Circuits for Co-

3. Radio Research Laboratory Staff. "Very High Frequency Techniques."
DETAIL MECHANICAL INFORMATION

INSTALLATION

The tube mounts in any position and requires a special, miniature, 4-prong socket such as an Amphenol Type 78-545 or low-loss equivalent. Clamping to the G_2 ring should be made in such a manner that no mechanical strain be set up in the glass between G_3 and G_3 rings. A toroidal spring contact between the cavity and the G_2 ring, as shown in Fig. 2, is recommended.

Temperatures of the G_3 sleeve in excess of 160°C cannot be tolerated; and in cavities where center conductor conduction is insufficient to hold this tolerance, forced-air cooling is required. In general, the center conductor of wide-range co-axial cavities will have sufficient mass to provide adequate conduction. However, in situations where conduction is inadequate, a center conductor made of coin silver will improve conduction sufficiently to obviate forced-air cooling.

Optimum broad-band operation is best achieved with a load termination of 50 ohms and VSWR'S not greater than 1.25/1.

SHIELDING

Operation of the RK6236 in the presence of strong magnetic fields usually requires shielding of the resonator and reflector leads to avoid undesirable modulation of the tube output. In extremely troublesome environments, it may be necessary to place the parts of the RK6236 not covered by the cavity in a metal chamber with polyiron chokes provided on the leads bringing the voltages into the chamber.

Fig. 2

![Diagram](image)
The exact value of reflector voltage producing maximum power output at a certain frequency varies from tube to tube. The voltage for all tubes, at each mode, will fall within the shaded area indicated below.
TYPE RK6236

VELOCITY VARIATION OSCILLATOR

NOTES:
A - REFERENCE DIAMETER.
B - THIS DIAMETER TO BE CONCENTRIC TO "A" WITHIN .005.
C - THIS DIAMETER TO BE CONCENTRIC TO "A" WITHIN .015.

RK6236
ELECTRON TUBE
OUTLINE DRAWING

RAYTHEON MANUFACTURING COMPANY
MICROWAVE AND POWER TUBE OPERATIONS

WALTHAM 54, MASS.
3327 — 5-55