# **DU MONT**

# CATHODE-RAY TUBES

# Types 5LP1, 5LP2, 5LP4, 5LP5

# Formerly designated as Types 2511A5, 2511B5, 2511D5, 2511C5

The Type 5LP cathode-ray tubes are designed for oscillographic and television picture tube applications. The four types differ only in the characteris-

tics of the fluorescent screens. The intensifier principle is used to provide a maximum deflection sensitivity for a given final accelerating voltage.

### CHARACTERISTICS

# HEATER

| Voltage, a.c. or d.c.<br>Current        |                       |                     | 6.3 volts<br>0.6 amper | ·e                  |
|-----------------------------------------|-----------------------|---------------------|------------------------|---------------------|
| DEFLECTION                              |                       |                     | Electrostat            | ic                  |
| FOCUS                                   |                       |                     | Electrostat            | ic                  |
| SCREEN                                  | 5LP1                  | 5LP2                | 5LP4                   | 5LP5                |
| Phosphor<br>Fluorescence<br>Persistence | Pl<br>Green<br>Medium | P2<br>Green<br>Long | P4<br>White<br>Medium  | P5<br>Blue<br>Short |

## MECHANICAL CHARACTERISTICS

The basing is such that:

- 1. The direction of the trace produced on the screen by deflecting electrodes  $D_3$  and  $D_4$  will not deviate more than  $\pm 10^\circ$  from a plane through pin No. 6 and the axis of the tube, while the angle between the direction of this trace and that of the trace produced on the screen by deflecting electrodes  $D_1$  and  $D_2$  will be  $90^\circ$   $\pm 3^\circ$ .
- 2. With deflecting electrode  $D_1$  (pin No. 3) positive with respect to  $D_2$  (pin No. 8) the spot will be deflected approximately toward pin No. 3, while with deflecting electrode  $D_4$ , (pin No. 6) positive with respect to  $D_3$  (pin No. 9) the spot will be deflected approximately toward pin No. 6.

#### DIRECT INTERELECTRODE CAPACITANCES (NOMINAL)

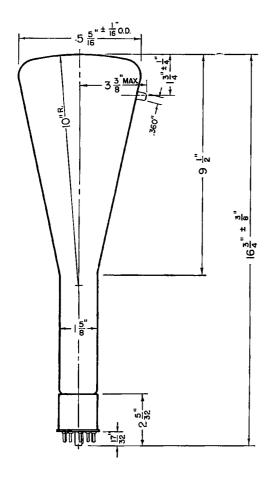
| Control electrode (grid) to all other electrodes | 8.0 uuf |
|--------------------------------------------------|---------|
| Deflecting Plate $D_1$ to Deflecting Plate $D_2$ | 2.6 uuf |
| Deflecting Plate $D_3$ to Deflecting Plate $D_4$ | 1.9 uuf |
| $D_1$ to all other electrodes                    | 8.2 uuf |
| $D_3$ to all other electrodes                    | 5.6 uuf |
| $D_1$ to all other electrodes except $D_2$       | 5.6 uuf |
| $D_2$ to all other electrodes except $D_1$       | 5.6 uuf |
| $D_3$ to all other electrodes except $D_4$       | 3.7 uuf |
| $D_4$ to all other electrodes except $D_3$       | 3.7 uuf |

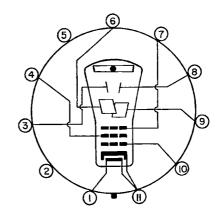
#### **RATINGS**

| Heater voltage                                                           | 6.3 volts                   |
|--------------------------------------------------------------------------|-----------------------------|
| Heater current                                                           | $0.6 \text{ amp.} \pm 10\%$ |
| Anode No. 3. (Intensifier electrode) voltage $(E_{b3})$                  | 4000 volts max.             |
| Anode No. 2 (Accelerating electrode) voltage (E <sub>b2</sub> )          | 2000 volts max.             |
| Anode No. 1 (Focusing electrode) voltage $(E_{b1})$                      | 1000 volts max.             |
| Grid (Control electrode) voltage (Ec.1)                                  | Never positive              |
| Peak voltage between Anode No. 2 and any deflecting electrode            | 500 volts max.              |
| Grid (Control electrode) voltage (Ec1)                                   | 1.5 megohms max.            |
| Impedance of any deflecting electrode circuit at heater supply frequency |                             |

### TYPICAL OPERATION

| Heater voltage                                         | 6.3  | 6.3  | 6.3   | volts                      |
|--------------------------------------------------------|------|------|-------|----------------------------|
| Anode No. 3 voltage ( $E_{b3}$ )                       | 2000 | 3000 | 4000  | volts                      |
| Anode No. 2 voltage $(E_{h2})$                         | 1000 | 1500 | 2000  | volts                      |
| Anode No. 1 voltage $(E_{b1})$ for focus when $E_{c1}$ |      |      |       |                            |
| is 75% of cut-off value                                | 250  | 375  | 500   | volts $\pm$ 20%            |
| Grid voltage $(E_{c1})$ for beam cut-off               | 30   | 45   | 60    | volts $\pm$ 50%            |
| Deflection Sensitivity:                                |      |      |       |                            |
| $D_1D_2$                                               | 0.49 | 0.33 | 0.25  | mm/d.c. volt (av.)         |
| $D_3D_4$                                               | 0.56 | 0.37 | 0.28  | mm/d.c. volt (av.)         |
| Deflection Factor:                                     |      |      |       | ·                          |
| $D_1D_2$                                               | 52   | 77   | 103 d | d.c. volts/inch $\pm 20\%$ |
| $D_3\overline{D_4}$                                    | 45   | 68   | 90 (  | d.c. volts/inch $\pm 20\%$ |


Deflection with Intensifier at Second Anode Potential:


|          | FACTOR                          | SENSITIVITY                    |
|----------|---------------------------------|--------------------------------|
| $D_1D_2$ | 42 d.c. volts/kv. in. $\pm$ 20% | 6 0.60 mm. kv./d.c. volt (av.) |
| $D_3D_4$ | 38 d.c. volts/kv. in $\pm$ 20%  | 0.67 mm. kv./d.c. volt (av.)   |

#### SPOT POSITION

When the tube is operated at (1) normal heater voltage; (2)  $E_{b2}$  2000 volts; (3)  $E_{b1}$ , adjusted for focus; (4)  $E_{c1}$  set at such a value as will avoid damage to the screen; (5) with each of the deflecting electrodes connected to Anode #2 through a one megohm resistor; and (6) with the tube shielded against external influences:

The spot will fall within a 30 mm. square, the center of which coincides with the geometric center of the tube face, and the sides of which are parallel to the traces produced by deflecting electrodes  $D_1$  and  $D_2$  and by deflecting electrodes  $D_3$  and  $D_4$  respectively.





Bottom View of Base

| Pin | No. | - | Heater              |
|-----|-----|---|---------------------|
|     |     | 2 | No Connection       |
|     |     | 3 | Deflection Plate D1 |
|     |     | 4 | Focusing Electrode  |
|     |     | 5 | Internal Connection |

- 5 Internal Connection. Do not use.6 Deflection Plate D4
- 7 Accelerating Electrode 8 Deflection Plate D2
- 9 Deflection Plate D310 Control Electrode
- 11 Heater and Cathode

Terminal A Intensifier Electrode

The intensifier terminal is within  $\pm$   $10^{\circ}$  of the plane through the D3 D4 trace and the tube axis and is on the same side of the tube as the locating key.

ALLEN B. DU MONT LABORATORIES, INC. Passaic, N. J., U. S. A.