THYRATRON TYPE WL-5878

The WL-5878 is a three-electrode, inert-gas-filled, grid-controlled thyratron with negative control characteristics. Cooling is by unrestricted air convection and characteristics remain essentially unchanged over a wide range of ambient temperatures. The WL-5878 is designed for application in industrial control circuits requiring a quick heating cathode.

ELECTRICAL:
- **Cathode:** Directly Heated Coated Filament
- **Filament:** Min. Bagey Max.
 - Voltage: 2.37 2.50 2.63 Volts
 - Current at filament Voltage = 2.5: 19.0 21.0 23.0 Amperes
 - Heating Time: 60 - 100 Seconds
 - Ionization Time: 10 µsec
- **Critical Anode Voltage at Grid:** -100 Volts
- **Critical Grid Voltage at Anode Voltage of 1500 Volts—See Fig. 1:** -4.0 -9.5 -15.0 Volts
- **Inter-electrode Capacitances (Approx.):**
 - Anode to grid: 1.0 µuf
 - Grid to cathode: 28.0 µuf
 - Typical Arc Drop: 16 Volts
 - Control Characteristic: Negative

MECHANICAL:
- **Mounting Position:** Any
- **Overall Height (Approx.):** 6-1/2"
- **Overall Diameter (Maximum):** 2-5/32"
- **Type of Cooling:** Air, Unrestricted Convection
- **Temperature Range:** -55 to +70°C
- **Bulb:** T-18
- **Anode Cap:** JETEC CI-5
- **Base:** JETEC A4-18
- **Net Weight (Approx.):** 8 oz.
- **Shipping Weight (Approx.):** 2 lb.

BASE CONNECTIONS
- G: Control Grid
- P: Filament
- A: Anode
- NC: No Connection

WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISION, ELMIRA, NEW YORK

from JETEC release #2073, Jan. 6, 1958
MAXIMUM RATINGS

ABSOLUTE MAXIMUM VALUES:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Anode Voltage</td>
<td>1500 max. Volts</td>
</tr>
<tr>
<td>Forward</td>
<td>1500 max. Volts</td>
</tr>
<tr>
<td>Inverse</td>
<td>80 max. Amperes</td>
</tr>
<tr>
<td>Average (Averaging Time 15 Seconds)</td>
<td>6.4 max. Amperes</td>
</tr>
<tr>
<td>Surge (Duration 0.10 Second or Less)</td>
<td>1120 max. Amperes</td>
</tr>
<tr>
<td>Commutation Factor</td>
<td>200 max. va/μsec</td>
</tr>
<tr>
<td>Current Rate of Change</td>
<td>0.25 max. a/μsec</td>
</tr>
<tr>
<td>Voltage Rate of Change</td>
<td>800 max. v/μsec</td>
</tr>
<tr>
<td>Negative Control Grid Voltage Before Conduction</td>
<td>250 max. Volts</td>
</tr>
<tr>
<td>During Conduction</td>
<td>10 max. Volts</td>
</tr>
<tr>
<td>Average Positive Control Grid Current</td>
<td>0.20 max. Ampere</td>
</tr>
<tr>
<td>Averaging Time= 1 cycle</td>
<td>60 max. cycles</td>
</tr>
</tbody>
</table>

NOTES

- General: These ratings are important in the prevention of "clean-up" or loss of the inert gas filling. Their observance will reduce the bombardment of anode or grid by positive ions of the gas filling, which may cause the gas ions to be absorbed in the tube element concerned.

- Commutation factor is the product of the rate of current decay in amperes per microsecond just prior to the end of commutation and the rate of inverse voltage rise in volts per microsecond just after the end of commutation. Its value should not exceed the value given in order to reduce ion bombardment of the anode during the de-ionization period. Limits are given on both components of this factor to correspond to factory test data limits. The limit on current rate of change is about at the highest value which is allowable under the fault current limit.

- When the tube conducts, positive ions are attracted to a grid at negative potential. This positive ion current flowing through the grid resistor will reduce the negative voltage at the grid from the higher negative grid supply voltage. To reduce ion grid bombardment, sufficient resistance must be provided to drop the negative grid supply voltage to a value not more negative than -10 volts as shown in the ratings.

- This rating indicates the heat emission properties of the grid. This value of current may be safely drawn to the grid if conduction occurs only while the anode is positive. However, during the period of negative anode potential, the grid potential must also be negative to prevent electrons being drawn to the grid and generating positive ions which would bombard the anode.

- For higher frequency ratings, consult the tube manufacturers.