The National Union 3C36 is a water or air cooled ultra-high frequency power triode especially designed for operation in the medium micro-wave range between 500 and 1500 megacycles. It is particularly useful in grounded grid type circuits giving stable triode performance in Class C oscillator service throughout this range. As an example it is possible to obtain better than 100 watts useful R.F. Power Output from a single tube at 1000 megacycles when operating at the rated maximum anode dissipation of 500 watts. At 750 megacycles and lower, the efficiency is greater than 50%, allowing a maximum power output of 250 watts to be obtained under similar conditions.

ELECTRICAL CHARACTERISTICS:

- **Cathode:** Oxide Coated Unipotential
- **Heater Voltage**: 6.3 Volts AC or DC
- **Heater Current**: 2.8 Amps.
- **Amplification Factor**
- **Transconductance**: 30 (Ib = 50 ma, E5 = 500 volts)
- **Maximum Frequency of Operation**

MAXIMUM RATINGS:

- **Heater Voltage**: 6.3 ± 5% volts max.
- **Average Grid Current**: 60 ma.
- **Anode Voltage**: 2000 volts max.
- **Average Anode Current**: 250 ma.
- **Peak anode current**: 50.0 Amps
- **RMS current not to exceed**: 0.8 Amps
- **Anode Dissipation:**
 - Water Cooled (1 liter per minute)
 - Air Blast Cooled

DIRECT INTERELECTRODE CAPACITANCES:

- **Plate to Cathode**: 0.017 uuf.
- **Grid to Cathode**: 7.2 uuf.
- **Grid to Plate**: 5.3 uuf.

MECHANICAL CHARACTERISTICS:

- **Maximum Overall Dimensions**
 - **Length**: 3 1/4 inches
 - **Diameter**: 1 3/8 inches
 - **Mounting Position**: Any
 - **Terminal Connections**: See Fig. 4
 - **Type of Cooling**
 - Water
 - Air Blast

TYPICAL OPERATING CONDITIONS:

- **Grounded Grid Class C Oscillator Service (See Fig. 5)**
- **Frequency**: 1000 Megacycles
- **Anode Voltage**: 1500 Volts
- **Cathode Resistor**: 150 Ohms
- **Grid Resistor**: 2500 Ohms
- **Anode Current**: 250 Ma
- **Grid Current**: 30 Ma
- **Power Output**: 60 Watts

* * * * * * * * *

from RMA release # 473, Feb. 15, 1946
The following additional features make the National Union 3C36 particularly desirable where moderate power C.W. output is required between 500 and 1500 megacycles.

1. The overall dimensions of the 3C36 (3 1/4" long, 1 3/8" dia.) are such as to allow the use of highly efficient resonant cavity and concentric line circuits at maximum frequencies in this range.

2. To facilitate the highest degree of performance in grounded grid circuits, the grid connection is located between cathode and anode connections, and the cathode-anode capacitance is kept to a minimum.

3. The heater for the unipotential cathode is completely shielded from the R.F. portions of the tube and large low-loss, low impedance connections are employed to the other electrodes. (Fig.4)

4. Construction of the tube along the cylindrical principle reduces to a minimum interelement dimensional changes due to temperature variation under operation.

5. The surfaces (internally and externally) over which the radio frequency currents flow are silver plated giving low loss operation.

6. Glass-to-metal seals are employed extensively in the construction of the NU-3C36 and represent the practical application of the most recent advances in this technique.

7. Air blast cooling may be employed with this tube if the plate dissipation is not allowed to exceed 200 watts. Recommended forms of cooling units are shown in Figs. 1 & 3.

FIG. 2
WATER COOLER ATTACHES TO ANODE END OF TUBE AS SHOWN IN PHOTOGRAPH. THIS COOLING UNIT MAY ALSO EMPLOY FORCED AIR BLAST

FIG. 1

ALTERNATE TYPE OF HEATER FOR AIR BLAST COOLING

FIG. 3

END VIEW OF HEATER CATHODE CONNECTION

FIG. 4

COMMON CATHODE HEATER

RE-ENTRANT CAVITY—FIXED FREQ.

JANUARY 1, 1946

Prepared by
Commercial Engineering Division

NEWARK NATIONAL UNION RADIO CORPORATION NEW JERSEY