Cathode Ray Tube

GENERAL DESCRIPTION

The 19BEP4 is an electrostatic focus and magnetic deflection, direct viewing, rectangular picture tube. Feature of this tube include a very short overall length, a small neck diameter, an aluminized screen and a non-ion trap gun.

Heater, for unipotential cathode
Heater voltage (a.c. or d.c.) 6.3 volts
Heater current at 6.3 volts 0.3 ± 5 % amp.
Warm-up time (average) 11 seconds (*)

Direct interelectrode capacitances

Grid n°1 to all other electrodes 6 uuF
Cathode to all other electrodes 5 uuF
External conductive coating to anode
maximum 1500 uuF
minimum 1000 uuF

Phosphor : P4 sulfide type

Fluorescence .. white
Phosphorescence .. white
Persistenee ... short

Focusing method : electrostatic
Deflecting method : magnetic
Deflection angle (approx.)

diagonal 110°
horizontal 99°
vertical 82°

Electron gun : type requiring non ion-trap magnet.

Tube dimensions

overall length 11 13/16" ± 1/8" (300 ± 6.5 mm)
greatest width 16 13/32" ± 1/8" (416.5 ± 3.2 mm)
greatest height 13 11/32" ± 1/8" (339 ± 3.2 mm)
Diagonal 18 5/8" ± 1/8" (473 ± 3.2 mm)
Neck length 4 1/4" ± 1/8" (107.5 ± 3.2 mm)

.../...
Screen dimensions (minimum)

Greatest width .. 15 1/8" (384 mm)
Greatest height ... 12" (305 mm)
Diagonal .. 17 9/16" (446 mm)
Projected area ... 172 sq. in. (1110 cm²)

Weight (approx.) ... 14 lbs (6.5 kg)
Bulb ... (See drawing)
Cap ... Recessed small cavity
Base .. B7-208
Basing ... SHR

Socket connections

Pin n°1 = heater
Pin n°2 = grid n°1
Pin n°3 = grid n°2
Pin n°4 = grid n°4
Pin n°6 = grid n°1
Pin n°7 = cathode
Pin n°8 = heater
Cap = grid n°3, grid n°5, collector

(*) The time required for the voltage across the heater to reach 80 per cent of its rated value after applying 4 times rated heater voltage to a circuit consisting of the tube heater in series with a resistance equal to 3 times the rated heater voltage divided by rated heater current.

MAXIMUM RATINGS

Design Maximum Values

Cathode Drive Service

Unless otherwise specified, voltage values are positive with respect to grid n°1.

Anode to grid n°1 voltage 20 000 max. volts
4 000 min. volts

Grid n°4 to grid n°1 voltage
positive value .. 1 100 max. volts
negative value .. 550 min. volts

Grid n°2 to grid n°1 voltage 700 max. volts
Grid n°2 to cathode voltage 550 max. volts
Cathode to grid n°1 voltage
Positive peak value .. 220 max. volts
Positive bias value .. 154 max. volts
Negative bias value 0 max. volt
Negative peak value 2 max. volts
Peak heater cathode voltage
- Heater negative with respect to cathode:
 during equipment warm-up period not exceeding
 15 seconds .. 450 max. volts
 After equipment warm-up period 200 max. volts
- Heater positive with respect to cathode 200 max. volts
Grid n°1 circuit resistance 1.5 max. megohms

TYPICAL OPERATING CONDITIONS

Anode to grid n°1 voltage 16 000 volts
Grid n°2 to grid n°1 voltage 400 volts
Grid n°2 current ... -15 to +15 ua
Grid n°4 to grid n°1 voltage (1) 0 to 400 volts
Grid n°4 current ... -25 to +25 ua
Cathode to grid n°1 voltage for visual extinction of
 focused raster ... 42 to 78 volts
Field strength of adjustable centering magnet (3) 0 to 8 gauss

(1) The grid n°4 voltage required for optimum focus of any individual
 tube may have a value anywhere between 0 and 400 volts. It is
 independent of anode current and will remain essentially constant
 for values of anode voltage or grid n°2 voltage within design ranges
 shown for these items.

 It is necessary to provide means such as a potentiometer for adjusting
 the focusing voltage.
NOTES for DIMENSIONAL OUTLINE

Note 1 - The plane through the tube axis and pin 4 may vary from the plane through the tube axis and anode terminal by angular tolerance (measured about the tube axis) of ±30°. Anode terminal is on same side as pin 4.

Note 2 - Socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. The design of the socket should be such that the circuit wiring cannot impress lateral strains through the socket contacts on the base pins. Bottom circumference of base wafer will fall within a circle concentric with bulb axis and having a diameter of 1 3/4".

Note 3 - Width of undisturbed region between mold-match line and splice line is 670" minimum. This should be the maximum width of tube support band.

Note 4 - With tube neck inserted through flared end of the reference line gauge JEDEC G.126 and with tube seated in gauge, the reference-line is determined by the intersection of the plane CC' of the gauge with the glass funnel.

Note 5 - This surface has a radius of 45°.

Note 6 - The minimum size of the contact area of the external conductive coating is 2" x 2" min. The actual area of this coating will be greater than the contact area so as to provide the required capacitance. External conductive coating must be grounded.

21/9/1961