TRIODE
insbesondere für NF-Verstärker und Modulator

Ausführung
für
Luftkühlung
RS 2011 L

Ausführung
für
Wasserkühlung
RS 2011 W

Ausführung
für
Verdampfungskühlung
RS 2011 V

Maße in mm

h - Heizanschlüsse
g - Gitteranschluß
ca. 5 kg
Gewicht der Röhre
ca. 2,5 kg
ca. 13 kg
Gewicht der Spezialverpackung
ca. 4 kg
ca. 13 kg
Abmessungen der Spezialverpackung
43 x 43 x 65 cm
33 x 31 x 42 cm
43 x 43 x 65 cm

RÖK 2252/1.10.61
Beschreibung und Anwendung

Die RS 2011 ist eine Triode mit niedrigem Verstärkungsfaktor, die insbesondere für Treiberstufen von NF-Verstärkern und für Modulatoren in Kathodenfolgeschaltung geeignet ist. Die maximale Anodenverlustleistung beträgt je nach Kühlungsart 8 bzw. 12 kW. Die Röhre kann bei HF-Verstärkung bis 30 MHz mit 11000 Volt und bis 70 MHz mit 8000 Volt Anodenspannung betrieben werden.

Heizung

\[U_f = 10 \, \text{V} \]
\[I_f \approx 70 \, \text{A} \]

Heizart: direkt

Kathodenwerkstoff: Wolfram, thoriert

Kennwerte

\[I_e = 20 \, \text{A} \quad \text{bei } U_a = U_g = 400 \, \text{V} \]
\[\mu = 15 \quad \text{bei } U_a = 1\ldots6 \, \text{kV}, \quad I_a = 1 \, \text{A} \]
\[S = 20 \, \text{mA/V} \quad \text{bei } U_a = 3 \, \text{kV}, \quad I_a = 1 \, \text{A} \]

Kapazitäten

\[C_{gk} = 48 \, \text{pF} \]
\[C_{ak} = 1,3 \, \text{pF} \]
\[C_{ga} = 23 \, \text{pF} \]
Grenzdaten

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(<) 30</td>
<td>70</td>
<td>MHz</td>
</tr>
<tr>
<td>(U_a)</td>
<td>11</td>
<td>8</td>
<td>kV</td>
</tr>
<tr>
<td>(U_g)</td>
<td>-1200</td>
<td>-1200</td>
<td>V</td>
</tr>
<tr>
<td>(I_k)</td>
<td>5</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>(I_{ksp})</td>
<td>20</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>(Q_a) (RS 2011 L)</td>
<td>8</td>
<td>8</td>
<td>kW</td>
</tr>
<tr>
<td>(Q_a) (RS 2011 W)</td>
<td>8</td>
<td>8</td>
<td>kW</td>
</tr>
<tr>
<td>(Q_a) (RS 2011 V)</td>
<td>12</td>
<td>12</td>
<td>kW</td>
</tr>
<tr>
<td>(Q_g)</td>
<td>100</td>
<td>100</td>
<td>W</td>
</tr>
</tbody>
</table>

Betriebsdaten

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(<) 30</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>(N_a)</td>
<td>22</td>
<td>16,5</td>
<td>11</td>
</tr>
<tr>
<td>(U_a)</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>(U_g)</td>
<td>-960</td>
<td>-800</td>
<td>-600</td>
</tr>
<tr>
<td>(U_{gs})</td>
<td>1260</td>
<td>1090</td>
<td>880</td>
</tr>
<tr>
<td>(I_a)</td>
<td>2,8</td>
<td>2,6</td>
<td>2,4</td>
</tr>
<tr>
<td>(I_g)</td>
<td>275</td>
<td>280</td>
<td>320</td>
</tr>
<tr>
<td>(N_a)</td>
<td>28</td>
<td>21</td>
<td>14,4</td>
</tr>
<tr>
<td>(N_{st})</td>
<td>335</td>
<td>300</td>
<td>265</td>
</tr>
<tr>
<td>(Q_a)</td>
<td>6</td>
<td>4,5</td>
<td>3,4</td>
</tr>
<tr>
<td>(Q_g)</td>
<td>70</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>(\eta)</td>
<td>78,5</td>
<td>78,5</td>
<td>77</td>
</tr>
<tr>
<td>(R_a)</td>
<td>1840</td>
<td>1570</td>
<td>1325</td>
</tr>
</tbody>
</table>

1) Kreisverluste sind nicht berücksichtigt.
Grenzdaten

<table>
<thead>
<tr>
<th>f</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_a</td>
<td>7 kV</td>
</tr>
<tr>
<td>U_g</td>
<td>-1200 V</td>
</tr>
<tr>
<td>I_k</td>
<td>5 A</td>
</tr>
<tr>
<td>I_{ksp}</td>
<td>20 A</td>
</tr>
<tr>
<td>Q_a (RS 2011 L)</td>
<td>8 kW</td>
</tr>
<tr>
<td>Q_a (RS 2011 W)</td>
<td>8 kW</td>
</tr>
<tr>
<td>Q_a (RS 2011 V)</td>
<td>12 kW</td>
</tr>
<tr>
<td>Q_g</td>
<td>100 W</td>
</tr>
</tbody>
</table>

Betriebsdaten

<table>
<thead>
<tr>
<th>f</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{Tr}</td>
<td>6 kW 1)</td>
</tr>
<tr>
<td>U_a</td>
<td>6 kV</td>
</tr>
<tr>
<td>$U_{g fest}$</td>
<td>-400 V</td>
</tr>
<tr>
<td>R_g</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>U_{gs}</td>
<td>1260 V</td>
</tr>
<tr>
<td>I_a</td>
<td>1,25 A</td>
</tr>
<tr>
<td>I_g</td>
<td>210 mA</td>
</tr>
<tr>
<td>N_a</td>
<td>7,5 kW</td>
</tr>
<tr>
<td>N_{st}</td>
<td>260 W 1)</td>
</tr>
<tr>
<td>Q_a</td>
<td>1,5 kW 2)</td>
</tr>
<tr>
<td>Q_g</td>
<td>40 W</td>
</tr>
<tr>
<td>η</td>
<td>80 %</td>
</tr>
<tr>
<td>R_a</td>
<td>2,7 kΩ</td>
</tr>
</tbody>
</table>

m	100 %
N_{mod}	3,75 kW
I_g	240 mA 1)
N_{st}	295 W 1)
I_g	200 mA 1)
N_{st}	245 W 1)

1) Kreisverluste sind nicht berücksichtigt
2) Die angegebenen Grenzdaten dürfen auch bei Modulation nicht überschritten werden. Es ist zu beachten, dass bei 100-prozentiger Modulation die Anodenverlustleistung etwa auf das 1,5-fache der für den Trägerwert angegebenen Verlustleistung ansteigt.
Grenzdaten

- **U_a** = 11 kV
- **U_g** = -1000 V
- **I_k** = 5 A
- **I_{kip}** = 20 A
- **Q_a (RS 2011 L)** = 8 kW
- **Q_a (RS 2011 W)** = 8 kW
- **Q_a (RS 2011 V)** = 12 kW
- **Q_g** = 100 W
- **R_g** = 10 kΩ

Betriebsdaten

- **N_{a~}**
 - 0
 - 39
 - 0
 - 16
 - 0
 - 16 kW
- **U_a** = 10 10 10 kV
- **U_g** ca.
 - -750
 - -750
 - -750 V
- **U_{g-gs}**
 - 0
 - 1950
 - 0
 - 1720
 - 0
 - 1500 V
- **I_a**
 - 2x0,3
 - 2x2,67
 - 2x0,3
 - 2x1,1
 - 2x0,3
 - 2x1,5 A
- **I_g**
 - 0
 - 2x185
 - 0
 - 2x42
 - 0
 - 0 mA
- **I_{gap}**
 - 0
 - 2x1,6
 - 0
 - 2x0,42
 - 0
 - 0 A
- **N_a**
 - 2x3
 - 2x26,7
 - 2x3
 - 2x11
 - 2x3
 - 2x15 kW
- **N_{st}**
 - 0
 - 2x170
 - 0
 - 2x32
 - 0
 - 0 W
- **Q_a**
 - 2x3
 - 2x7,2
 - 2x3
 - 2x3
 - 2x3
 - 2x7 kW
- **Q_g**
 - 0
 - 2x30
 - 0
 - 2x1
 - 0
 - 0 W
- **\eta**
 - -73
 - -73
 - -53 %
- **R_{aa}**
 - 4,15
 - 10,1
 - 6,1 kΩ
Grenzdaten

U_a	=	11	kV
U_g	=	-1000	V
I_k	=	5	A
I_{ksp}	=	20	A
Q_a (RS 2011 L)	=	8	kW
Q_a (RS 2011 W)	=	8	kW
Q_a (RS 2011 V)	=	12	kW
Q_g	=	100	W
R_g	=	10	kΩ

Betriebsdaten

N_a~	=	0	16	0	10	0	10	kW
U_a	=	8	8	8	kV			
U_g ca.	=	-600	-610	-620	V			
U_{g-ga}	=	0	1470	0	1380	0	1226	V
I_a	=	2x0,25	2x1,4	2x0,2	2x0,9	2x0,15	2x1,1	A
I_g	=	0	2x60	0	2x27	0	0	mA
I_{gep}	=	0	2x0,6	0	2x27	0	0	A
N_a	=	2x2	2x11,2	2x1,6	2x7,2	2x1,2	2x8,8	kW
N_{at}	=	0	2x43	0	2x18	0	0	W
Q_a	=	2x2	2x3,2	2x1,6	2x2,2	2x1,2	2x3,8	kW
Q_g	=	0	2x7	0	2x1,5	0	0	W
η	=	- 72	- 70	- 57 %				
R_{aa}	=	6,12	9,8	5,5	kΩ			
TREIBERSTUFE FÜR NIEDERFREQUENZVERSTÄRKER UND MODULATOR

B-Betrieb, 2 Röhren in Gegentaktschaltung
Kathodenfolgeschaltung \(I_g = 0 \)

Grenzdaten

\(U_a \)	= 11 kV
\(U_g \)	= -1000 V
\(I_k \)	= 5 A
\(I_{ksp} \)	= 20 A
\(Q_a \) (RS 2011 L)	= 8 kW
\(Q_a \) (RS 2011 W)	= 8 kW
\(Q_a \) (RS 2011 V)	= 12 kW
\(Q_g \)	= 100 W
\(R_g \)	= 10 kΩ

Betriebsdaten

\(U_a \)	= ca. 2,7
\(U_g \)	= ca. -180
\(U_{g-gs} \)	= 0 1035
\(U_{k-ks} \)	= 0 675
\(I_g \)	= 2x0 2
\(I_{ksp} \)	= (2x0, 2) 2x3, 5
\(N_a \)	= 2x0, 54 2x1, 62
\(Q_a \)	= 2x0, 54 2x1, 43
\(I_k \)	= 2x0, 5 2x1, 85
\(I_{ksp} \)	= (2x0, 5) 2x9, 8
\(N_a \)	= 2x2, 35 2x9, 1
\(Q_a \)	= 2x2, 35 2x8, 35

(Schaltungsbeispiele siehe unten)

RöK 2252/1.10.61
Hinweise für den Einbau und Anschluß der Röhre

Für den Einbau der Röhre ist zu beachten: Achse vertikal, Anode bei Luftkühlung unten oder oben, bei Wasserkühlung und Verdampfungskühlung nur unten.

Für den Anschluß der Kathode sind die unter "Zubehör" angegebenen Kathodenanschlüsse zu verwenden.

Zum Anschluß des Gitters ist an dem Gitteranschlüßring eine Anzahl Gewindebohrungen M4 vorgesehen. Mit Hilfe einiger mitgeliefeter Rändelschrauben kann der Gitteranschluß befestigt werden.

Maximale Temperatur der Röhrenaußenteile

Ausführung für Luftkühlung

Es wird empfohlen, die erforderliche Luftmenge mit Hilfe eines Rotameters oder eines Prandtl'schen Staurohres einzustellen.

Luftmenge und Lufttemperatur sind im Betrieb zu überwachen. Bei Unterschreitung der erforderlichen Luftmenge müssen Anodenspannung und Heizspannung automatisch abgeschaltet werden.

Die ange saugte Kühl Luft ist durch ein Filter zu reinigen, um eine Verschmutzung des Radiators zu verhindern.
Lufteintrittstemperatur $T_e = +25^\circ C$
Luftdruck 760 mm Hg

Diagramm zeigt die Beziehung zwischen Luftmenge V (m3/min), Druckabfall P (mm WS) im Radiator und der Lufteintrittstemperatur T_e. Die x-Achse zeigt die Luftmenge V, die y-Achse zeigt die Druckabfall P. Der Bildschirm zeigt einen linearen Zusammenhang zwischen den beiden Variablen und der Lufteintrittstemperatur.
Ausführung für Wasserkühlung

Die folgenden Kühlwasserdiagramme gelten für eine Wassereintrittstemperatur $T_e = 20^\circ C$ bzw. $T_e = 50^\circ C$. Für andere, in diesem Bereich liegende Wassereintrittstemperaturen kann die erforderliche Wassermenge durch lineare Interpolation ermittelt werden.

Wassermenge und Wassertemperatur sind im Betrieb zu überwachen. Bei Unterschreitung der erforderlichen Wassermenge müssen Anodenspannung und Heizspannung automatisch abgeschaltet werden.

Der statische Kühlwasserdruck darf 5 ata nicht überschreiten.

Ausführung für Verdampfungskühlung

Kühldaten für maximale Anodenverlustleistung $Q_a = 12$ kW

Durch Kühlkühl system abzuführende Gesamtleistung ($Q_a + Q_g + 0,8 N_H$) 12,7 kW

Äquivalente Wärmeleistung 182 kcal/min

Volumen des erzeugten Wasserdampfes

bei Wasserrückflußtemperatur $20^\circ C$ ca. $0,5$ m3/min
bei Wasserrückflußtemperatur $90^\circ C$ ca. $0,56$ m3/min

Menge des zurückliegenden Wassers

bei Wasserrückflußtemperatur $20^\circ C$ ca. $0,3$ l/min
bei Wasserrückflußtemperatur $90^\circ C$ ca. $0,35$ l/min

Ausführliche Angaben für Verdampfungskühlung auf Anfrage.
Wassereintrittstemperatur $T_e = 20°\text{C}$

Wasseraustrittstemperatur $T_a (°\text{C})$

Wassermenge

Druckabfall $P (\text{mmWS})$

im Kühltopf

Wassereintrittstemperatur $T_e = 50°\text{C}$

Wasseraustrittstemperatur $T_a (°\text{C})$

Wassermenge

Druckabfall $P (\text{mmWS})$

im Kühltopf
Über notwendige Vorkehrungen zur schnellen Abschaltung der Anodenspannung bei eventuellen Röhrenüberschlägen und eine einfache experimentelle Prüfung dieser Abschaltung durch einen Testdraht von 0,2 mm ø unterrichtet der Absatz 'Schutzmaßnahmen' in den 'Erläuterungen zu den Technischen Daten der Senderöhren' Ebenso finden sich dort Hinweise auf die zum Schutz der Röhre im Gitterstromkreis zu treffenden Maßnahmen.

Zur Sicherung gegen thermische Überlastung der Anode wird bei der Ausführung für Luftkühlung RS 2011 L die Röhrensicherung Rö Sich 1 empfohlen. (Siehe 'Zubehör' und besonderes Merkblatt 'Röhren- und Senderschutzsicherungen').

Kathodenanschlüsse (2 Stück je Röhre) Rö Kat 61
Anschlußstück für den Luftkanal bei RS 2011 L Rö Anst 61
Kühltopf für Wasserkühlung bei RS 2011 W Rö Ku 61
Kühltopf für Verdampfungskühlung bei RS 2011 V Rö Ku V 61
Weiteres Zubehör für Verdampfungskühlung auf Anfrage
Röhrensicherung für RS 2011 L Rö Sich 1
Sechskant-Steckschlüssel für Rö Sich 1 Rö Zub 10
Schalter für Röhrensicherung Rö Kt 1
KENNLINIENFELD

\[I_a = f(U_g) \quad I_a = f(U_0) \]
$I_g = f(U_g)$ $I_g = f(U_a)$
KENNLINIENFELD

\[U_g = f(U_a) \quad I_a, I_g = \text{Parameter} \]