DESCRIPTION

The ITT-Picture Tube A 67-510 X is a rectangular colour picture tube with 110° deflection angle and 29 mm neck diameter.

The useful screen area of 2100 cm² (appr.) has nearly straight sides of 33x40 cm (appr.) with 3x4 aspect ratio. The filterglass of the faceplate has a light transmission of 49.5 % (appr.).

The phosphor screen is composed of triangular dot groups - colour triplets - each consisting of a red-, green- and blue-emitting phosphor dot. The green- and blue-emitting phosphors utilize silver activated sulfide phosphors, the red emitting phosphor is composed of yttrium compounds activated with rare-earths.

The tube utilizes three electrostatic-focus guns and is operating according to the shadow mask principle.

The gun axes are tilted slightly towards the tube axis to facilitate convergence to the shadow mask. Beam-convergence and deflection are provided magnetically.

1. MECHANICAL DATA

Bulb: All-glass Type with rectangular
Spherical Faceplate
Filterglass
Implosion Protection: Steel-Jacket including Tube Mount
Minimum Useful Screen Dimensions:
Aspect Ratio 3x4
Diagonal: 626 mm
Horizontal: 528 mm
Vertical: 396 mm
Deflection Angles
Diagonal: 110°
Horizontal: 97°
Vertical: 77°
Weight: 20 kg (appr.)
Base: JEDEC B 12-260

ANNEX
ML-TE
CRT75/02-03
- 17 -
2. ELECTRICAL DATA

2.1. TYPICAL OPERATING CONDITIONS

Heater Voltage \(U_f \) 6.3 volts
Heater Current appr. \(I_f \) 730 ma
Anode Voltage \(U_{g4g5a} \) 25,000 volts
Focusing Voltage \(U_{g3} \) 4,200...5,000 volts

Grid-No. 2
Cutoff Voltage \(U_{g2 \text{ cutoff}} \) 160...445 volts
(at \(-U_{g1} = 105 \) V)

Grid-No. 1
Cutoff Voltage \(U_{g2 \text{ cutoff}} \) 76...162 volts
(at \(U_{g2} = 300 \) V) (Approx.) 5 s

2.2. MAXIMUM RATINGS

Anode
Voltage \(U_{g4g5a \text{ max}} \) 27,500 volts
\(U_{g4g5a \text{ min}} \) 20,000 volts
Current \(I_{g4g5a \text{ max}} \) 1,000 \(\mu \) amps

Focusing Electrode
Voltage \(U_{g3 \text{ max}} \) 6,000 volts

Grid-No. 2
Peak Voltage \(U_{g2 \text{ p max}} \) 1,000 volts

Grid-No. 1
Negative Peak Voltage \((-U_{g1}) \text{ p max} \) 400 volts
Negative Operating Cutoff Value \((-U_{g1}) \text{ max} \) 200 volts
Positive-Bias Value \(U_{g1 \text{ max}} \) 0 volts
Positive-Peak Value \(U_{g1 \text{ p max}} \) 2 volts

Heater/Cathode
Voltage \(U_{f/k \text{ max}} \) 450 volts
\(U_{f/k \text{ max}} \) 200 volts
\(U_{f/k \text{ p max}} \) 200 volts
\(U_{f/k \text{ p max}} \) 200 volts
\(U_{f/k \text{ max}} \) 0 volts

Notes see page 3
2.3. RATINGS FOR CIRCUIT DESIGN

Leakage current

\[I_{g3} \leq 15 \ \mu \text{amps} \]
\[I_{g2} \leq 5 \ \mu \text{amps} \]
\[I_{gl} (-U_{gl} = 150 \text{ V}) \leq 5 \ \mu \text{amps} \]

NOTES FOR PAGE 2 AND 3

1) For grid drive service. Voltage values are for each gun and refer to cathode potential.

2) Maximum heater voltage tolerance of \(\pm 10 \% \) is admissible. For maximum cathode life, it is recommended to regulate heater supply to 6.3 volts.

3) Maximum ratio of Grid-No. 2 cutoff voltages, Highest Gun to Lowest Gun in any tube will not exceed the value of 1.86 at the same Grid-No. 1 voltage.

4) Visual extinction of focused spot (see Cutoff Design Chart p. 8).

Relation: Line cutoff = Spot cutoff \(\times 1.01 + 1 \text{ volts} \)
Raster cutoff = Spot cutoff \(\times 1.05 + 7 \text{ volts} \)

5) Due to a higher total anode current of longer duration, deformation of the shadow mask may be effected, causing colour impurities. To avoid this effect, a limitation of the total anode current to 1.5 ma is practically sufficient.

6) Design-Maximum Rating should not be exceeded under the worst probable operating conditions.

7) These values indicate the permissible leakage currents of the electrodes concerned. The circuit must be designed in such a manner that the voltages applied are not substantially altered by these currents.

8) The equipment should be designed mechanically and electrically so that in consequence of an internal arc no power sources alone or in combination will cause a discharge current across the heater exceeding 750 ma. Such current limitation will prevent heater burnout.

9) To avoid picture distortions, the interference from the heater must be kept as low as possible. Therefore, the AC voltage between heater and cathode shall not exceed the value \(U_{f/k} \text{ rms} = 20 \text{ volts} \).

10) During warm-up period not exceeding 15 seconds \(U_{f/k} \text{ max} \) may increase to 450 volts; within 15 and 45 seconds this value must decrease at least gradually to 200 volts.

11) By using a short time heater cathode the picture will appear in 5 seconds approx., when applying a constant heater voltage.
2.4. CAPACITANCES (Appr.)

Grid- No. 1 of any gun to
all other electrodes \(c_{g1} \) 3.8 pF
Cathode of any gun to
all other electrodes \(c_k \) 6.3 pF
Grid- No. 3 to
all other electrodes \(c_{g3} \) 2.6 pF
Anode to external
conductive coating \(c_{g4g5a/m \; \text{max}} \) 2,500 pF
\(c_{g4g5a/m \; \text{min}} \) 2,000 pF
Anode to steel-
reinforcement \(c_{g4g5a/m'} \) 450 pF

3. OPTICAL DATA

Faceplate Filterglass
Light Transmission (appr.) 49.5 %

Screen
Aspect Ratio 3x4.
Three separate phosphor dots
- Colourtriplets - arranged in
Triangular groups, aluminized.
Spacing between centres of adjacent
Triplets nearest centre of screen 0.66 mm

Colour dot Coordinates \(x \quad y \)
Red 0.630 0.340
Green 0.300 0.600
Blue 0.150 0.060

Coordinates for White 0.281 0.311

Average percentage of total cathode current to produce White
Red 34 %
Green 34 %
Blue 32 %

Ratio of cathode currents for White
Red to Green 1.0 (0.65...1.5)
Red to Blue 1.1 (0.75...1.5)
Blue to Green 0.9 (0.6...1.3)

4. GENERAL CONSIDERATIONS

X-RADIATION

At the maximum permissible anode voltage of 27.5 kilovolts and a total anode current of 1.0 milliamps, X-Radiation will not exceed the permissible value of 0.5 mR/h.
MOUNTING INFORMATION

Orientation
The tube must be operated with the tube axis in a horizontal position and with the blue gun up. This is the operating position to which refer the specified beam displacement and convergence correction values. The deflecting yoke should not be used for supporting the picture tube.

Socket
Socket should not be rigidly mounted but connected by flexible leads. The base may be located within a circle of 51 mm diameter, concentric with the perpendicular line through the centre of screen.

Steel-reinforcement
Mounting angles of the steel-jacket may be used for fixing the tube in the receiver. Corresponding data see drawing p. 12.

External conductive coating
Contact to the external conductive coating should be made by multiple fingers to prevent localized overheating.

Steel jacket and external conductive coating are separated galvanically against each other. They may be connected mutually if it is allowed by the effective safety rules.

The impedance between steel jacket and external conductive coating must not exceed 1 MΩ at 50 Hz and 5 kΩ at 15 kHz.

Anode contact
The area round the anode contact is coated with water-repellent insulating layer, to clean it wipe only with soft dry lintless cloth.

5. APPLICATION DATA

Reference potential
Unless otherwise specified, voltage values are for each gun and are positive with respect to cathode.

Focusing Electrode
Focusing voltage for optimum focus is 17...20 % of anode voltage.

Low voltage adjustment
Grid-No. 2 and Grid-No. 1 voltages for visual extinction of focused spot are shown in the Cutoff Design Chart p. 8.

Beam landing correction
In spite of internal magnetic shield and due to manufacturing variations which may produce misregister, it is necessary for pure colour operation to correct for remaining magnetic effects and for manufacturing variations by an additional static magnetic field (purifying magnet).
Displacements, measured at centre of screen:

Raster displacement: \(\text{max} \ 12 \text{ mm} \)

Lateral convergence displacement:
- blue beam with respect to converged red and green beams \(\text{max} \pm 5 \text{ mm} \)

Radial convergence displacement:
- excluding effects of dynamic convergence \(\text{max} \pm 8 \text{ mm} \)

The additional deflecting components may be arranged according to the drawing on page 14.

Grounding
The external conductive coating is to connect with the negative high voltage terminal.

Arc-over protection
In order to minimize the possibility of tube damage caused by an internal arc, it is recommended to limit the high voltage power for anode and grid-No. 3 and to apply protective gaps.

Maximum ratings
The network is to lay out in such a manner that the tabulated data should not be exceeded during life, even under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation or signal and environmental conditions. The high voltage limiting values are of absolute maximum rating type, which are not to exceed initially and throughout life. The picture tube must not be connected until the high tension has been adjusted within the limiting values.

6. COMPONENT CONSIDERATIONS

Deflecting yoke
The deflecting yoke should not be used for supporting the picture tube. The yoke must be free to move along the neck for a distance of approximately 1.5 cm to enable adjustment of colour purity. The yoke mount should also provide for a small amount of rotational adjustment. Raster may be adjusted by superposition of a DC current of suitable size to the deflecting current within each coil. Pincushion correction may be accomplished by adding the necessary current waveforms to the deflecting current waveforms.
Purifying magnet
The purifying magnet is used to compensate for the effects of uniform extraneous magnetic fields which may affect register. The purifying magnet should be located on the neck according to the instructions shown on p. 14. The device should provide a magnetic field perpendicular to the tube axis. The field should be adjustable in magnitude and direction to cause a change of register.

Magnetic shield
The tube is equipped with an internal magnetic metal shield to minimize effects of interfering extraneous magnetic fields. To be effective, the shield and shadow mask must be degaussed. This may be done automatically by means of a degaussing coil when the equipment is switched on.

For optimum degaussing it is necessary to delay the start of vertical deflection until the degaussing current has died out completely. Otherwise an interference of the field for degaussing and a stray field of vertical deflection (deflection yoke) may impress an indefinite magnetical condition to the tube.

Radial converging assembly
The radial converging assembly and associated circuits provide the magnetic fields necessary to converge dynamically the three electron beams as they traverse the screen of the picture tube, and together with the lateral converging magnet it provides the magnetic fields necessary for static convergence. The assembly is mounted on the neck of the picture tube with the three electromagnets centered over the three pairs of internal converging pole pieces. The necessary horizontal and vertical current waveforms are passed through the windings for maintaining convergence of the deflected beams. Static magnetic fields for converging the three beams at the center of the screen are produced by passing direct current through the windings or by permanent magnets with variable intensity or by combination of both.

Lateral converging device
The lateral converging magnet supplements the correction supplied by the radial converging assembly in statically converging the three electron beams at the center of the screen.

The magnetic field should cause a lateral (horizontal) movement of the blue beam opposite to the movement of the converged red and green beams. The magnetic field strength should be adjustable to provide correction of specified tolerance values.
CUTOFF DESIGN CHART

$u_{g4g5a} = 20 \ldots 27.5 \text{ kV}$

u_{g3} ADJUSTED FOR FOCUS

u_{g2}

V

$(-u_{g1}) \text{ V}$

1000

700

600

500

400

300

200

100

0

20

40

60

80

100

120

140

160

180

200
CUT-OFF - ELECTRO-CHARACTERISTIC

\[U_k = 6.5 \text{ V} \]

\[U_{g0}/g_1 = 20 \ldots 27.5 \text{ kV} \]

Each gun

\[g_0/g_1 \] adjusted for focus

\[g_0/g_1 \] adjusted for each gun to provide spot cutoff for desired fixed \(g_0/g_1 \)

PARAMETERS: CUTOFF VOLTAGE 50, 100, 150, 200 V

VIDEO SIGNAL Volts from SPOT CUTOFF \(U_{g0}/g_1 \) per gun

1974-7-30

2) Reference line is determined by plane c-c' when gauge is seated against the funnel (see p. 11).

3) This area is free of conductive coating.

4) Location of internal radial-converging pole pieces.

5) For mounting bolts a free passage of at least 9.5 mm diameter at nominal position is ensured.

6) Bulb measure at the front edge of implosion-protection.

7) Maximum deviation between one screenside angle-seating and a plane through the other three angle seating will not exceed 2 mm.

8) The points "Z" are reference points for the location concerning the altitude of the points "X" and "Y". The dimensions for the location of the points "X", "Y" and "Z" count also for the border line of the minimum useful screen area.

9) Mounting holes for degaussing coils.

10) Sagittal contour. Sagittal Heights with reference to centerface at points 3,2 beyond edge of min. screen.

<table>
<thead>
<tr>
<th>Station No.</th>
<th>great axis</th>
<th>small axis</th>
<th>Sagittal height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>201,07</td>
<td>17,91</td>
</tr>
<tr>
<td>2</td>
<td>25,40</td>
<td>200,96</td>
<td>18,21</td>
</tr>
<tr>
<td>3</td>
<td>50,80</td>
<td>200,69</td>
<td>19,13</td>
</tr>
<tr>
<td>4</td>
<td>76,20</td>
<td>200,20</td>
<td>20,73</td>
</tr>
<tr>
<td>5</td>
<td>101,60</td>
<td>199,54</td>
<td>22,91</td>
</tr>
<tr>
<td>6</td>
<td>127,00</td>
<td>198,68</td>
<td>27,93</td>
</tr>
<tr>
<td>7</td>
<td>152,40</td>
<td>197,64</td>
<td>29,11</td>
</tr>
<tr>
<td>8</td>
<td>177,80</td>
<td>196,39</td>
<td>33,12</td>
</tr>
<tr>
<td>9</td>
<td>203,20</td>
<td>194,87</td>
<td>37,74</td>
</tr>
<tr>
<td>10</td>
<td>228,60</td>
<td>193,34</td>
<td>43,00</td>
</tr>
<tr>
<td>11</td>
<td>242,32</td>
<td>192,38</td>
<td>46,10</td>
</tr>
<tr>
<td>12 (diagonal)</td>
<td>257,35</td>
<td>183,95</td>
<td>48,34</td>
</tr>
<tr>
<td>13</td>
<td>261,09</td>
<td>173,53</td>
<td>47,40</td>
</tr>
<tr>
<td>14</td>
<td>262,46</td>
<td>152,40</td>
<td>44,32</td>
</tr>
<tr>
<td>15</td>
<td>263,86</td>
<td>127,00</td>
<td>41,15</td>
</tr>
<tr>
<td>16</td>
<td>265,60</td>
<td>101,60</td>
<td>38,53</td>
</tr>
<tr>
<td>17</td>
<td>265,89</td>
<td>76,20</td>
<td>36,50</td>
</tr>
<tr>
<td>18</td>
<td>266,52</td>
<td>50,80</td>
<td>35,05</td>
</tr>
<tr>
<td>19</td>
<td>266,90</td>
<td>25,40</td>
<td>34,16</td>
</tr>
<tr>
<td>20</td>
<td>267,03</td>
<td>0</td>
<td>33,86</td>
</tr>
</tbody>
</table>
LOCATION OF RADIAL-CONVERGING POLE PIECES

BOTTOM VIEW OF BASE

HOLeS FOR MOUNTING DEGAUSSING COILS

ANODE BULB CONTACT

LATERAL CONVERGING DEVICE

PURIFYING MAGNET

RADIAL-CONVERGING ASSEMBLY

DEFLECTION YOKE

RELATIVE PLACEMENT OF TYPICAL COMPONENTS

DIMENSIONS IN MILLIMETERS