TYPE 6587 HYDROGEN THYRATRON

GENERAL DATA

DESCRIPTION:
The 6587 is a unipotential cathode, three element hydrogen filled thyatron designed for network discharge service. In such service it is suitable for producing pulse outputs of more than 2 megawatts at an average power level of more than 1.6 KW.
The special features of the 6587 include an internal hydrogen reservoir connected across the filament and capable of producing and maintaining the hydrogen pressure throughout the useful life of the tube. Further features are the high peak voltage and current ratings and the ruggedized construction.

<table>
<thead>
<tr>
<th>Electrical Data, General</th>
<th>Nom.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater voltage...........</td>
<td>6.3</td>
<td>5.9</td>
<td>6.7</td>
</tr>
<tr>
<td>Heater current, E_R=6.3 volts...</td>
<td>9.6</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Minimum heating time.....</td>
<td>3 Minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Data, General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting position........</td>
<td>Any</td>
</tr>
<tr>
<td>Base......................</td>
<td>Super Jumbo 4-pin with Bayonet A4-18 with ceramic insert</td>
</tr>
<tr>
<td>Anode Cap..................</td>
<td>Medium Metal, C1-5 with corona flare</td>
</tr>
<tr>
<td>Cooling....................</td>
<td>Note 1</td>
</tr>
<tr>
<td>Net Weight................</td>
<td>10 Ounces</td>
</tr>
</tbody>
</table>

Dimensions
See outline drawing

Ratings
Max. peak anode voltage, forward... 16.0 Kilovolts
Max. peak anode voltage, inverse (Note 2).. 16.0 Kilovolts
Min. anode supply voltage............. 3.5 Kilovolts d.c.
Max. peak average anode current..... 325 Amperes
Max. average anode current......... 225 Milliamperes
Max. RMS anode current (Note 3)... 6.3 Amperes a.c.
Max. epy x ib x prr................... 3.9 x 10^4
Max. anode current rate of rise..... 1500 Amperes/μsecond

Peak trigger voltage.................... Note 4
Max. peak inverse trigger voltage... 200 Volts

<table>
<thead>
<tr>
<th>Initial Limit</th>
<th>End of Life Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. anode delay time (Note 5)......</td>
<td>0.6 0.6 Microsecond</td>
</tr>
<tr>
<td>Max. anode delay time drift........</td>
<td>0.1 0.1 Microsecond</td>
</tr>
<tr>
<td>Max. time jitter (Note 6)...........</td>
<td>0.005 0.01 Microsecond</td>
</tr>
</tbody>
</table>

Ambient temperature..................... —50° to +90° Cent.
Shock rating............................ 24° Navy (Flyweight)

Shock machine
Typical Operation as Pulse Modulator,

DC Resonant Charging

Peak network voltage 16.0 12.0 Kilovolts
Pulse repetition rate 1000 2500 Pulses/second
Pulse length 1.0 0.4 Microsecond
Pulse forming network impedance 48 48 Ohms
Trigger voltage 200 200 Volts
Peak power output (Resistive load
92% Zn) 1.31 .736 Megawatt
Peak anode current 175 130 Amperes
Average anode current 0.175 0.13 Amperes d.c.

Note 1

Cooling permitted. However, there shall be no air blast
directly on the bulb.

Note 2

The peak inverse anode voltage shall not exceed 5.0 kv
during the first 25 microseconds after the pulse.

Note 3

The root mean square anode current shall be computed as the
square root of the product of the peak current and the
average current.

Note 4

The Driver pulse, measured at the tube socket with the thyra-
tron grid disconnected, shall have the following characteristics:

A. Voltage 200-300 Volts
B. Duration 2 Microseconds (at 70% points)
C. Rate of rise 200 Volts/microsecond (min.)
D. Impedance 50-500 Ohms

The limits of anode time delay and anode time jitter are based
on the minimum trigger. Using the highest permissible trigger
voltage and lowest trigger source impedance materially re-
duces these values below the limits specified.

Note 5

The time of anode delay is measured between the 26 percent
point on the rising portion of the unloaded grid voltage pulse
and the point at which evidence of anode conduction first
appears on the loaded grid pulse.

Note 6

Time jitter is measured at the 50 percent point on the anode
current pulse.