<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizspannung</td>
<td>$V_f = 4,0 , \text{V}$</td>
</tr>
<tr>
<td>Tension de chauffage</td>
<td></td>
</tr>
<tr>
<td>Filament voltage</td>
<td></td>
</tr>
<tr>
<td>Heizstrom</td>
<td>$I_f = 0,065 , \text{A}$</td>
</tr>
<tr>
<td>Courant de chauffage</td>
<td></td>
</tr>
<tr>
<td>Filament current</td>
<td></td>
</tr>
<tr>
<td>Anodenspannung</td>
<td>$V_{a,\text{max}} = 150 , \text{V}$</td>
</tr>
<tr>
<td>Tension anodique</td>
<td></td>
</tr>
<tr>
<td>Anode voltage</td>
<td></td>
</tr>
<tr>
<td>Normaler Anodenstrom</td>
<td>$I_a = 3,5 , \text{mA}$</td>
</tr>
<tr>
<td>Courant anodique normal</td>
<td></td>
</tr>
<tr>
<td>Normal anode current</td>
<td></td>
</tr>
<tr>
<td>Neg. Gittervorspannung</td>
<td>$V_g \approx \text{ca.}$</td>
</tr>
<tr>
<td>Polarisation négative de grille</td>
<td>$V_g \approx \text{env.} , 9 , \text{V}$</td>
</tr>
<tr>
<td>Negative grid bias</td>
<td>$V_g \approx \text{appr.}$</td>
</tr>
<tr>
<td>Verstärkungsfaktor</td>
<td>$g(k) = 9$</td>
</tr>
<tr>
<td>Coefficient d'amplification</td>
<td></td>
</tr>
<tr>
<td>Amplification factor</td>
<td></td>
</tr>
<tr>
<td>Steilheit (max.)</td>
<td>$S_{\text{max}} = 1,2 , \text{mA/V}$</td>
</tr>
<tr>
<td>Inclinaison (max.)</td>
<td></td>
</tr>
<tr>
<td>Slope (max.)</td>
<td></td>
</tr>
<tr>
<td>Steilheit (norm.)</td>
<td>$S_{\text{norm}} = 0,9 , \text{mA/V}$</td>
</tr>
<tr>
<td>Inclinaison (norm.)</td>
<td></td>
</tr>
<tr>
<td>Slope (norm.)</td>
<td></td>
</tr>
<tr>
<td>Innerer Widerstand (norm.)</td>
<td>$R_i = 10000 , \text{Ohm}$</td>
</tr>
<tr>
<td>Résistance intérieure (norm.)</td>
<td></td>
</tr>
<tr>
<td>Internal resistance (norm.)</td>
<td></td>
</tr>
<tr>
<td>Anoden-Gitterkapazität</td>
<td>$C_{ag} = 4 , \mu\text{F}$</td>
</tr>
<tr>
<td>Capacité grille-plaque</td>
<td></td>
</tr>
<tr>
<td>Anode-grid capacity</td>
<td></td>
</tr>
<tr>
<td>Max. Länge</td>
<td>$l = 83 , \text{mm}$</td>
</tr>
<tr>
<td>Longueur max.</td>
<td></td>
</tr>
<tr>
<td>Overall length</td>
<td></td>
</tr>
<tr>
<td>Grösster Durchmesser</td>
<td>$d = 42 , \text{mm}$</td>
</tr>
<tr>
<td>Diamètre max.</td>
<td></td>
</tr>
<tr>
<td>Max. diameter</td>
<td></td>
</tr>
<tr>
<td>Sockel</td>
<td>$= \text{A 32}$</td>
</tr>
<tr>
<td>Culot</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>Sockelschaltung</td>
<td>$= \text{S. 1}$</td>
</tr>
<tr>
<td>Connexion du culot</td>
<td></td>
</tr>
<tr>
<td>Base connection</td>
<td></td>
</tr>
</tbody>
</table>

Anwendung: Audion mit Transformatorkopplung

Applications: Détecteur avec couplage par transformateur

Function: Detector with transformer coupling

N.F.-Verstärker mit Transformatorkopplung

Amplificateur b.f. avec couplage par transformateur

L.F. amplifier with transformer coupling

Oszillator

Oscillateur

Oscillator
PHILIPS MINIWATT

A 409

- $V_f = 4.0\, V$
- $V_{a\text{max}} = 150\, V$
- $I_a = 3.5\, mA$
- $S_{\text{max}} = 1.2\, mA/V$
- $S_{\text{norm}} = 0.9\, mA/V$
- $g(k) = 9$

Graph showing:

- $V_a = 150\, V$
- $V_a = 100\, V$
- $V_a = 50\, V$

Axis labels:

- Vertical: $V_a (V)$
- Horizontal: $V_g (V)$

Grid lines and values are shown for $-24, -20, -16, -12, -8, -4, 0, 4, 8$.