References and notation contained herein are taken from Military Specifications for Electron tubes MIL-E-11D 31 March '58.

Description: Gaseous Discharge Diode, X Band (Note 11)

References and notations contained herein are taken from Military Specifications for Electron tubes MIL-E-11D 31 March '58.

Description: Gaseous Discharge Diode, X Band (Note 11)

Ratings:

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute: If mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb mAdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T Bulb °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum:	+85	+125
Minimum:	-55	
Test Conditions: 0	250	

Cathode: Filamentary Type
Dimensions: Per Outline Drawing (Fig. 1)
Base: Per Outline Drawing (Fig. 1)
Mounting Position: Any

Ref. Para. Test Conditions
...
4.5 Holding Period: 168 hours
4.9.18.1.10 Carton Drop:...
4.9.20.3 *Vibration: No Voltages, Note 9.
4.10.5.1 Filament Voltage: If = 170mA | Ef = 10 Vdc
4.13.2 Tube Voltage Drop: Note 1,2 | Et = 90 Vdc
...
4.11.4 Intermittent Life Test Notes 1,3,89. | 2500 Cycles
(One min. on, two min. off) Preheat time = 2 to 3 sec.

Note 6: The frequency specified is that of the Signal Generator.
Note 7: Excess noise ratio should be measured by comparison with an approved standard.
Note 8: The tube shall be tested at an ambient temperature of +85°C.
Note 9: Intermittent Life test end points shall apply.
Note 10: The Excess Noise Ratio (N_e-1) is defined in Db as
N_e-1 = 10 log (T_e-1) where T_e is the effective electron temperature.
Note 11: The noise frequencies generated by this tube cover a broad band of frequencies. This bandwidth is limited only by the type of mount used. This tube is normally used with a mount in RG-52/U wave guide, at a 10 degree angle in the E-plane. Other wave guide sizes may be used with properly adapted mounts.
FIG. 2

D.C. TEST CIRCUIT

FIG. 3

TEST CIRCUIT FOR EXCESS NOISE MEASUREMENTS
FIG. 4