The EIMAC 4CX125C and 4CX125F are horizontally-finned versions of the 4CX300A. These tubes possess the same rugged internal features of the 4CX300A and are quite free of mechanical noise under severe shock and vibration conditions.

The horizontal fins used on these tubes result in a lighter and smaller tube than the 4CX300A. Transverse cooling air-flow is required to attain the 125 watt nominal plate dissipation rating.

GENERAL CHARACTERISTICS

ELECTRICAL

- **Cathode:** Oxide-coated, Unipotential
- **Heating Time:** Min. 30 seconds, Nom. 60 seconds, Max. ± 150 volts
- **Heater:** Voltage: 4CX125C 6.0 volts, 4CX125F 26.5 volts
- **Current:** 4CX125C 2.6 amperes, 4CX125F 0.6 amperes
- **Amplification Factor (Grid-Screen):** 4.0
- **Transconductance (I_g = 200 Ma):** 12,000 umhos
- **Frequency for Maximum Ratings:** 500 MHz

Interelectrode Capacitances, Grounded Cathode:

- **Input:** Min. 25.0 pF, Max. 33.0 pF
- **Output:** Min. 4.5 pF, Max. 4.5 pF
- **Feedback:** Min. 0.06 pF, Max. 0.06 pF

MECHANICAL

- **Base:** Special, breechblock, terminal surfaces
- **Socket:** EIMAC SK-700 series
- **Maximum Operating Temperatures:**
 - Anode Core: 250°C
 - Ceramic-to-Metal Seals: 250°C
- **Operating Position:** Any
- **Cooling:** Forced air
- **Net Weight:** 3.5 ounces
- **Shipping Weight (Approximate):** 1 pound

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Class-C</th>
<th>Class-C</th>
<th>Class-AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Mod</td>
<td>Teleg or FM</td>
<td>Audio or SSB</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
<td>1500 volts</td>
<td>2000 volts</td>
</tr>
<tr>
<td>DC Screen Voltage</td>
<td>300 volts</td>
<td>300 volts</td>
</tr>
<tr>
<td>DC Grid Voltage</td>
<td>250 volts</td>
<td>250 volts</td>
</tr>
<tr>
<td>DC Plate Current</td>
<td>200 ma</td>
<td>125 ma</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>83 watts</td>
<td>125 watts</td>
</tr>
<tr>
<td>Screen Dissipation</td>
<td>2 watts</td>
<td>2 watts</td>
</tr>
</tbody>
</table>

Note: See 4CX300A data sheet for characteristic curves and typical operating conditions.

TYPICAL OPERATION

<table>
<thead>
<tr>
<th>RF Amplifier (excluding circuit losses)</th>
<th>DC Plate Voltage (Volts)</th>
<th>Driving Power (Watts)</th>
<th>Input Power (Watts)</th>
<th>Output Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-C Telegraphy or FM Telephony</td>
<td>2000</td>
<td>3.0</td>
<td>500</td>
<td>390</td>
</tr>
<tr>
<td>Plate-Modulated Telephony (Carrier)</td>
<td>1500</td>
<td>2.0</td>
<td>300</td>
<td>235</td>
</tr>
<tr>
<td>Class-AB<sub>1</sub> Linear Amplifier</td>
<td>2000</td>
<td>0</td>
<td>315</td>
<td>205</td>
</tr>
</tbody>
</table>

(Revised 6-1-67) © 1963, 1967 by Varian

Printed in U.S.A.
APPLICATION

Cooling: The 4CX125C and 4CX125F are intended for use where transverse cooling air is desired. With the anode cooler installed in a duct of 1" x 1½" cross section, approximately 8 cfm of air is required to maintain seal temperatures below 250° C. This presumes sea level operation with an ambient temperature of 25° or less. Sufficient air must be circulated around the base terminals to maintain the rated seal temperatures.

NOTE: These dimensions reflect standard manufacturing tolerances. Where they are to be made the basis of purchase specifications, they should first be checked with the factory.

NOTES:
1. DIMENSIONS IN INCHES.
2. (**) CONTACT SURFACE