The CK6932 is a filamentary type subminiature pentode of low filament current designed for service in portable equipment. The suppressor grid may be used as an independent control electrode for circuits such as gated amplifiers. The flexible terminal leads may be soldered or welded directly to the terminals of circuit components without the use of sockets. Standard inline subminiature sockets may be used by cutting the leads to a suitable length.

MECHANICAL DATA

- **ENVELOPE:** T-3 Glass
- **BASE:** Pinch Press (0.016" tinned flexible leads. Length: 1.5" min.
 Spacing: 0.048" center-to-center)
- **TERMINAL CONNECTIONS:** (Red Dot is adjacent to Lead 1)
 - Lead 1 Plate
 - Lead 2 Grid #2
 - Lead 3 Filament, Negative
 - Lead 4 Grid #1
 - Lead 5 Filament, Positive
 - Lead 6 Grid #3
- **MOUNTING POSITION:** Any

ELECTRICAL DATA

DIRECT INTERELECTRODE CAPACITANCES (pF/pF/s) ●

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid #1 to Plate</td>
<td>0.030</td>
</tr>
<tr>
<td>Input</td>
<td>3.5</td>
</tr>
<tr>
<td>Output</td>
<td>3.85</td>
</tr>
<tr>
<td>Grid #1 to Grid #3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

RATINGS – ABSOLUTE MAXIMUM VALUES:

- Filament Voltage (dc) 1.25 ± 0.20 volts
- Plate Voltage 67.5 volts
- Screen Grid Voltage 67.5 volts
- Cathode Current 1.5 mA

CHARACTERISTICS AND TYPICAL OPERATION:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Voltage</td>
<td>1.25</td>
</tr>
<tr>
<td>Filament Current</td>
<td>20</td>
</tr>
<tr>
<td>Plate Voltage</td>
<td>22.5</td>
</tr>
<tr>
<td>Screen Grid Voltage</td>
<td>22.5</td>
</tr>
<tr>
<td>Grid #1 Voltage</td>
<td>0</td>
</tr>
<tr>
<td>Grid #3 Voltage</td>
<td>0</td>
</tr>
<tr>
<td>Plate Current</td>
<td>300</td>
</tr>
<tr>
<td>Screen Grid Current</td>
<td>300</td>
</tr>
<tr>
<td>Transconductance G1−P</td>
<td>250</td>
</tr>
<tr>
<td>Grid #1 Voltage for Ib=10 µA (approx.)</td>
<td>-2.0</td>
</tr>
<tr>
<td>Grid #3 Voltage for Ib=10 µA (approx.)</td>
<td>-3.0</td>
</tr>
<tr>
<td>Screen Grid Current at Ec=-8.0</td>
<td>750 µA</td>
</tr>
<tr>
<td>Screen Grid Current at Ec=-3.0</td>
<td>500 µA</td>
</tr>
</tbody>
</table>

● With cylindrical shield (0.405" i.d. by 1 7/8" long) connected to Lead 6.

These data identify a particular developmental tube design and the tube designation or the descriptive data may be subject to change.
PLATE AND SCREEN CURRENT vs. GRID #3 CURRENT

Conditions:
- $E_f = 1.25 \text{ Vdc}$
- $E_b = 45 \text{ Vdc}$
- $E_{c2} = 45 \text{ Vdc}$
- $I_b = \text{ constant}$
- $I_{sg} = \text{ constant}$

Grid #3 Voltage - Volts

Plate or Screen Current - Microamperes

-10 -8 -6 -4 -2 0 +2 +4 +6 +8 +10

0 200 400 600 800 1000 1200 1400

-0.5 V
-1.25 V
-2.0 V

$E_{c1} = 0 \text{ V}$
TRANSCONDUCTANCE vs. GRID #3 Voltage

Conditions:
- $E_f = 1.25 \text{ Vdc}$
- $E_b = 45 \text{ Vdc}$
- $E_{sg} = 45 \text{ Vdc}$
- Grid #3 = $P =$
- Grid #1 = $P =$

Grid #3 Voltage Plate Transconductance μhos

Grid #1 Voltage to Plate Transconductance μhos

Grid #1 Voltage - Grid #1 Voltage - Volts

Grid #3 Voltage - Grid #3 Voltage - Volts

- -0.5 V
- -1.25 V
- -2.0 V