MECHANICAL DATA

Bulb .. T-9
Base Intermediate Shell Octal, Low Loss Phenolic 8-Pin
Basing 8BD
Cathode Coated Unipotential
Mounting Position Any

RATINGS

Shock (Intermittent Service-Abs. Max.) 450 g
Vibration (Continuous Service-Design Center) ... 2.5 g
Mechanical Resonance None Below 100 c.p.s

ELECTRICAL DATA

HEATER CHARACTERISTICS

Heater Voltage (Avg.) 6.3 Volts
Heater Voltage (Abs. Max.) 7.0 Volts
Heater Voltage (Design Center) 6.3 Volts
Heater Current (Avg.)^2 300 Ma
Heater Current (Max.) 325 Ma
Heater Current (Min.)^2 275 Ma

RATINGS

Plate Voltage 275 Max. 250 Design
Plate Dissipation (Each Plate) 1.1 Center
Positive Grid Voltage 0 Volts
Heater-Cathode Voltage 100 90 Volts

CHARACTERISTICS AND TYPICAL OPERATION

Class A Amplifier

Min. Avg. Max.^2
Plate Voltage 250 Volts
Grid Voltage –2 Volts
Cathode Bias Resistor 870 Ohms
Plate Current 1.4 2.3 3.2 Ma
Transconductance 1200 1600 2000 μmhos
Amplification Factor 55 70 85
Plate Current When E_c = –5.75 Volts ... 25 μA
Heater-Cathode Leakage at ±100 Volts ... 20 μA
Grid Current 1.0 μA

NOTES:

1. Maximum base dielectric loss factor is 0.1. Reference: ASTM Designation D-150-47T.
2. Limits given here are the extremes which may be found in production.

SYLVANIA ELECTRIC PRODUCTS INC.

Prepared and Released By The
TECHNICAL PUBLICATIONS SECTION
EMPORIUM, PENNSYLVANIA
APRIL 1953
AVERAGE TRANSFER CHARACTERISTICS

PLATE RESISTANCE (r_D) IN KILOMHS

AMPLIFICATION FACTOR (μ)

PLATE (i_D) MILLIAMPERES

CONTROL GRID VOLTS

$E_f = 6.3$ VOLTS
$E_b = 250$ VOLTS

$C5242$