MECHANICAL DATA
Bulb .. T-6½
Base ... Small Button 9-Pin
Basing 9A
Cathode Unipotential
Mounting Position Any

ELECTRICAL DATA
HEATER CHARACTERISTICS
Heater Voltage 6.3 12.6 Volts
Heater Current 0.45 0.225 Ampere
Heater-Cathode Voltage
Heater Positive with Respect to Cathode
DC Component 90 Volts Max.
Total DC and Peak 180 Volts Max.
Heater Negative with Respect to Cathode
Total DC and Peak 180 Volts Max.

DIRECT INTERELECTRODE CAPACITANCES (Unshielded)
Grid to Plate (Each Section) 3.0 µf
Input (Each Section) 3.8 µf
Output (Section 1) ¹ 0.5 µf
Output (Section 2) ¹ 0.38 µf
Plate to Plate 0.5 µf

RATINGS (Design Center Values — Each Section)
Plate Voltage 300 Volts Max.
Positive DC Grid Voltage 0 Volt Max.
Plate Dissipation 2.2 Watts Max.
Plate Dissipation (Both Plates) 4.0 Watts Max.
Cathode Current 15 Ma Max.
Grid Circuit Resistance
Fixed Bias 0.1 Megohm Max.
Cathode Bias 0.5 Megohm Max.

AVERAGE CHARACTERISTICS (Each Section)
Plate Voltage 150 Volts
Cathode Bias Resistor 220 Ohms
Plate Current 8.2 Ma
Plate Resistance, approximate 7250 Ohms
Transconductance 6500 µmhos
Amplification Factor 47

TYPICAL OPERATION (Computer Service — Each Section)
<table>
<thead>
<tr>
<th>Condition</th>
<th>Plate Supply Voltage</th>
<th>Plate Load Resistor</th>
<th>Grid Voltage</th>
<th>Plate Current, approximate</th>
<th>Grid Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>150</td>
<td>7200</td>
<td>0²</td>
<td>10.5</td>
<td>—</td>
</tr>
<tr>
<td>Off</td>
<td>150 Volts</td>
<td>7200 Ohms</td>
<td>— Volt</td>
<td>— Ma</td>
<td>—5.5 Volts</td>
</tr>
</tbody>
</table>

NOTES:
1. Section 1 connects to pins 6, 7 and 8. Section 2 connects to pins 1, 2 and 3.
2. Approximate value of grid voltage with grid current adjusted for approximately 140 microamperes.
3. The grid voltage required to produce 150 microamperes in one section normally will not differ by more than 1.5 volts from the grid voltage required to produce 150 microamperes in the other section with a plate supply voltage of 150 volts and a plate load resistor of 7200 ohms.