MECHANICAL DATA
Maximum Overall Length 2.38 Inches
Maximum Overall Diameter 1.01 Inches

ELECTRICAL DATA
DIRECT INTERELECTRODE CAPACITANCES
Grid to Plate .. 1.95 μF
Grid to Cathode 1.30 μF
Plate to Cathode 0.07 μF

RATINGS
Heater Voltage (a.c or d.c) 6.3 Volts
Heater Current 400 Ma
Maximum Plate Dissipation 5.0 Watts
Maximum Seal Temperature 175°C
Maximum Plate Voltage 350 Volts
Maximum Operating Frequency 2900 Mc

CHARACTERISTICS
Conditions: (E_b = 180 volts d.c, R_k = 400 ohms)
Transconductance 4500 μmhos
Amplification Factor 25
Plate Current 12.0 Ma

TYPICAL OPERATING CONDITIONS
UHF Oscillator, CW
Plate Voltage 180 Volts D.C
Plate Current, R_k/I_b 25 Ma D.C
Frequency ... 900-2900 Mc
Power Output 250 Mw Avg.
Over the Band

APPLICATION DATA
The Sylvania Type 5765 was designed for use as a cw oscillator at frequencies up to 2900 Mc. The 5765 has a built-in internal feedback circuit between cathode and anode and fits into a concentric line oscillator. A small amount of adjustable, external feedback is generally necessary in order to obtain optimum power output at any given frequency. A feedback probe between the output and input lines may be used.

The Type 192 or 192A cavities as supplied by Amerac Inc., are recommended for the 5765.
The Type 5765 in a typical quarter wave concentric line circuit. An external probe may be used to provide the feedback necessary for oscillation.

OUTLINE DRAWING

DIAGRAM NOTES:
1. Plate contact area.
2. Grid contact area.
3. Cathode and filament contact area.
4. Filament contact area.