The LAY2-A is a filamentary diode designed for use in television receivers as the high-voltage rectifier to supply power to the anode of the television picture tube. It is primarily intended for use in flyback types of power supplies.

Features of the LAY2-A include built-in X-radiation shielding and additional design and specification controls for the reduction of X-radiation output.

GENERAL

ELECTRICAL
- Cathode - Coated Filament
- Filament Characteristics and Ratings
 - Filament Voltage, AC or DC* ... 1.25±0.2 Volts
 - Filament Current† ... 0.2 Amperes
- Direct Interelectrode Capacitances§
 - Plate to Filament: (p to f) ... 1.4 pf

MECHANICAL
- Operating Position - Any
- Envelope - T-9, Glass
- Base - E2-92, Button 2-Pin
- Top Cap - Gl-49, Small
- Outline Drawing
 - Maximum Bulb Diameter ... 1.188 Inches
 - Maximum Seal Diameter ... 1.250 Inches
 - Minimum Bulb Diameter ... 1.062 Inches
 - Maximum Over-all Length ... 3.005 Inches
 - Maximum Seated Height ... 2.680 Inches
 - Minimum Seated Height ... 2.520 Inches

MAXIMUM RATINGS

FLYBACK RECTIFIER SERVICE*—DESIGN-MAXIMUM VALUES UNLESS OTHERWISE STATED
- Peak Inverse Plate Voltage
 - DC Component (Absolute-Maximum Value) ... 22000 Volts
 - Total DC and Peak (Absolute-Maximum Value) ... 26000 Volts
 - Steady-State Peak Plate Current ... 50 Milliamperes
 - DC Output Current ... 0.5 Milliamperes
 - Filament Voltage, AC or DC (Absolute-Maximum Value) ... 1.45 Volts
 - Filament Voltage, AC or DC (Absolute-Minimum Value) ... 1.05 Volts

PHYSICAL DIMENSIONS
- Pins - Filament
- Cap - Plate

TERMINAL CONNECTIONS

BASING DIAGRAM

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.
MAXIMUM RATINGS (Cont’d)

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

AVERAGE CHARACTERISTICS

Tube Voltage Drop, approximate
I_b = 7.0 Milliamperes DC .. 100 Volts

X-RADIATION RATING

X-radiation, maximum .. 0.5 mR/hr

Based on accumulated sample test data taken initially and during life test, tubes do not exceed the maximum rating limit of 0.5 mR/hr at any time throughout their useful life, when operated within the maximum ratings, including heater voltage, specified on this data sheet.

This X-radiation maximum rating is based on data obtained with the use of the Victoreen 440 RF survey meter with a 3 3/8 inch aperture. X-radiation is measured with the face of the meter at a distance of 4 3/4 inches from the external surface of the tube. This rating information is not necessarily applicable when a different radiation measuring instrument or aperture is used.

Operation of the LAY2-A outside of the Absolute-Maximum Ratings indicated may damage the tube and/or result in either temporary or permanent changes in the X-radiation characteristics of the tube. Equipment design must be such that these Absolute-Maximum Ratings are not exceeded.

The above X-radiation characteristics are measured in accordance with JEDEC Publication No. 67, "Recommended Practice for Measurement of X-Radiation from Receiving Tubes," and controlled in accordance with JEDEC Publication No. 73, "Recommended Practice for Quality Control of X-Radiation from High Voltage Rectifier and Shunt Regulator Receiving Tubes."

The General Electric Company makes no representation concerning the X-radiation output from these tubes when operated beyond the maximum ratings set forth herein.
WARNING

X-RADIATION

Operation of the 1AY2-A outside of the Absolute-Maximum Ratings indicated may produce soft X-rays above 0.5 milliroentgens per hour which may constitute a health hazard on prolonged exposure at close range unless the tube is adequately shielded. Equipment design must provide required shielding.

Precautions must be exercised during the servicing of equipment employing the 1AY2-A to assure that the high voltage is adjusted to the recommended value and that any shielding components are replaced to their intended positions before the equipment is operated.

SHOCK HAZARD

The high voltages at which the 1AY2-A is operated can be extremely dangerous to the user or service-man. Extreme care should be taken in the use of and for the servicing and adjustment of any high voltage circuit.

Precautions must be exercised during the replacement or servicing of the 1AY2-A in equipment to assure that the high voltage output terminal is properly grounded while inserting or removing the tube from its socket or while connecting or disconnecting the top cap connector.

THE EQUIPMENT MANUFACTURER SHOULD PROVIDE A WARNING LABEL IN AN APPROPRIATE POSITION ON THE EQUIPMENT TO ADVISE THE SERVICEMAN OF ALL PRECAUTIONS HEREIN.

NOTES

* The equipment designer should design the equipment so that filament voltage is centered at the specified bogey value, with filament supply variations restricted to maintain filament voltage within the specified tolerance.

‡ Filament current of a bogey tube at Ef = 1.25 volts.

§ Without external shield.

¶ For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations," Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.

€ CAUTION - Operation of this tube for an extended period of time with the filament voltage above the absolute maximum rated value of 1.45 volts may result in the production of X-radiation in excess of the maximum rated limit of 0.5 mR/hr.