

TH 3529 HIGH-GAIN 12-GHZ TWT FOR COMMUNICATIONS SATELLITES

FEATURES

- Specifically developed for use in communicationssatellite transponders.
- Unusually high gain: at least 55 dB at saturation and over 60 dB under small-signal conditions.
- **Powerful**: over 20 watts of saturated output power available.
- Linear transmission characteristics: small-signal to saturation phase shift limited to 40°, max.
- Lightweight, compact and extremely rugged; to withstand all the rigors of launching and the space environment.

• Exceptional reliability: designed to operate at least seven full years in space, with an MTTF of at least 500,000 hours (60 % confidence level). Long-life impregnated-tungsten cathode.

DESCRIPTION

The TH 3529 high-gain traveling-wave tube has been developed to meet the severe requirements for in-space operation in communications-satellite transponders. Delivering more than 20 watts of output power at saturation, in the 11.7 to 12.2-GHz frequency band (1), this lightweight, compact tube is rugged enough to withstand the extreme environmental conditions encountered in launching, orbital insertion and operation is space.

Since a transponder TWT must normally perform simultaneous amplification of several carriers, it is extremely important that its transmission characteristics be very linear. This is expressed quantitatively by setting a limiting value on the phase variation between small-signal and large-signal operation. In the TH 3529, that phase shift does not exceed a maximum of 40° .

This advanced traveling-wave tube also provides the very small fine-grain small-signal gain variations and flat gain characteristics needed in satellite-transponder service. Incorporating PPM focusing, the TH 3529 is cooled by simple conduction alone, through its base plate.

Manufactured to the very strict quality-assurance standards for space tubes, this TWT is designed to provide at least seven years of continuous in-space operation. It is estimated that its improved impregnated-tungsten cathode will have a useful operating life of more than 200,000 hours.

Variants of the TH 3529 are available for operation in other frequency ranges and/or at lower power levels. The Electron Tube Group of THOMSON-CSF welcomes the opportunity to discuss your specific requirements with you.

(1) The band allocated for national communications-satellite systems.

CHARACTERISTICS

_							
$\boldsymbol{\nu}_{i}$	261	.~	rm	2	n	r	Ω
	31 I	u		а		·	u

	7 to 12. 2	GHz
Single-carrier saturated output power, min.	20	W
Gain at saturation, min.	55	dB
Small-signal gain, min.	60	d₿
Noise figure, max.	28	dB
Nominal input and output impedance	50	Ω
VSWR, input and output : hot, max	1. 5 : 1 1. 3 : 1	
Frequency response in any 125 MHz channel :	1. 5 . 1	
- Gain ripple at saturation	± 0. 1	dB
- Gain ripple at saturation	± 0. 1	dB
- Gain slope at saturation	± 0. 205	dB/MHz
- Gain slope below saturation	± 0. 003	dB/MHz
·	± 0. 01	UD/WITZ
Third-order intermodulation products:	/ 10 JB	
· · · · · · · · · · · · · · · · · · ·		relative to
	r carrier's c	output level
- With each carrier output at a level, relative to the single-carrier		
saturation level of — 6 dB	- 9 dB	– 13 dB
the third-order IM product's level, relative to either carrier is 17 dB		- 33 dB
AM/PM Transfer, at saturation		ˈ≤6°/dB
Small-signal to saturation phase shift, max.		40°
Group-delay variation at saturation, typ.		0. 5 ns
Overall efficiency (DC to saturated RF), typical		30 %
Mechanical Weight, approx		650 g
Dimensions		-
RF Connections		•
Power-supply connections		
Cooling		. •
Operating-temperature range (base plate) :		Conduction
Normal	- 5	to +70° C
Extreme (Note 3)	- 15	to +85° C
TYPICAL OPERATION		
Single-carrier saturated output power	+ 13.	2 dBW
Gain at saturation		7 dB
Small-signal gain		2 dB
Noise figure		6 dB
Input and output VSWR		As specified
Frequency response		As specified
Third-order intermodulation products		As specified
AM/PM Transfer, at saturation		5°/dB
Output level below saturation	 3 _ 6 dR	1 - 10 dB
Phase shift		3°
Variation of group delay	1	. 0.5 ns
variation of group delay		5. 5 113

⁽²⁾ The 11.7 to 12.2-GHz band has been allocated for national communications-satellite systems. This tube can be delivered in alternate versions, optimized for operation in other frequency ranges and/or at lower power levels.

⁽³⁾ Characteristics not guaranteed.

GAIN VERSUS FREQUENCY (Typical) +1.0 +0.5 Output level relative to saturation at the lower end of the band (dB) 0 -0.5 -1.0 -4.5 -5.0 -5.5 -6.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 11.8 11.9 12.2

11.7

Frequency (GHz)

12.1

RF input power relative to saturation (dB)

OUTLINE DRAWING

