HEPTODE FREQUENCY CHANGER

Miniature heptode, primarily intended as a frequency changer in battery-operated receivers, and suitable for a.v.c. It combines a high conversion conductance for this type of valve with a low oscillator drive voltage.

FILAMENT

Suitable for series or parallel operation, d.c. only

<table>
<thead>
<tr>
<th></th>
<th>Series</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_f</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>I_f</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>

CAPACITANCES

- C_{a-all}: 8.5 pF
- C_{g3-all}: 7.5 pF
- C_{g2-all}: 5.0 pF
- C_{g1-all}: 4.0 pF
- C_{a-g3}: ≤400 mμF
- C_{g2-g3}: 1.6 pF
- C_{g1-g3}: ≤200 mμF
- C_{g1-g2}: 3.0 pF

OPERATING CONDITIONS

- $V_a = V_b$: 85 V
- V_{g3}: 0 V
- R_{g3}: 180 kΩ
- R_{g2}: 33 kΩ
- R_{g1-t+i}: 27 kΩ
- V_{g4} (approx.): 60 V
- V_{g2} (approx.): 30 V
- V_{g1} (r.m.s.): 4.0 V
- I_k: 2.55 mA
- I_a: 700 μA
- I_{g1}: 150 μA
- I_{g2}: 1.6 mA
- I_{g1}: 100 μA
- $γ_c$: 325 μA/V
- $γ_a$: 650 kΩ
- V_{g3} (for 100:1 reduction in g_c): –6.0 V

*Optimum value. In a typical circuit, I_{g1} should be between 50μA and 250μA.

Oscillator Section (with g_1 connected to f+)

- V_a: 85 V
- V_{g4}: 60 V
- V_{g3}: 0 V
- V_{g2}: 30 V
- I_{g2}: 2.5 mA
- $γ_{m(g1-g2)}$: 900 μA/V
- $γ_{g1-g2}$: 7.5 μA/V

FEBRUARY 1960 (1)
LIMITING VALUES

- V_b max. (absolute) 140 V
- V_b max. 120 V
- V_a max. 90 V
- V_{G4} max. 90 V
- V_{G2} max. 60 V
- I_k max. 4.0 mA
- R_{G3-f} max. 3.0 MΩ
- R_{G1-f} max. 35 kΩ

All dimensions in mm