QUICK REFERENCE DATA

63cm (25in) rectangular shadow-mask colour television tube incorporating three guns and a metal-backed three-colour phosphor dot screen.

- Advanced red phosphor, europium activated.
- Increased white brightness.
- Unity current ratio for white point $x = 0.281$, $y = 0.311$
- Temperature compensated shadow-mask maintains purity during warm-up. Shadow-mask optimised for minimum moiré effect on 625 line system.
- Reinforced tube envelope—separate safety screen not required.

<table>
<thead>
<tr>
<th>Deflection angle</th>
<th>90 deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focusing</td>
<td>Electrostatic</td>
</tr>
<tr>
<td>Light transmission (approx.)</td>
<td>52 %</td>
</tr>
<tr>
<td>Maximum overall length</td>
<td>531 mm</td>
</tr>
</tbody>
</table>

This data should be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS - TELEVISION PICTURE TUBES

HEATER

$$ V_h \ (\text{see note 1}) \quad 6.3 \quad \text{V} $$

$$ I_h \quad 900 \quad \text{mA} $$

The limits of heater voltage and current are contained in General Operational Recommendations - Television Picture Tubes.

OPERATING CONDITIONS (each gun)

- $V_{a3+a4} \quad 25 \quad \text{kV}$
- $V_{a2} \ (\text{focus electrode control range}) \quad 4.2 \text{ to } 5.0 \quad \text{kV}$
- $V_{a1} \ (\text{at } V_g = -100\text{V for visual extinction of focused raster}) \quad 210 \text{ to } 495 \quad \text{V}$
- $V_g \ (\text{at } V_{a1} = 300\text{V for visual extinction of focused raster}) \quad -65 \text{ to } -135 \quad \text{V}$

*Light output at screen centre

$\ (\text{at } I_{a3+a4} = 800\mu\text{A}) \quad 90 \quad \text{cd/m}^2 \ (\text{nits})$

*To produce white of colour co-ordinates $x = 0.281$, $y = 0.311$ with a focused raster size of $50.4 \times 39.6\text{cm}$.
SCREEN

Metal backed

Phosphor types for separate fluorescent colours:

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Europium activated rare earth Sulphide</td>
</tr>
<tr>
<td>Green</td>
<td>Sulphide</td>
</tr>
<tr>
<td>Blue</td>
<td></td>
</tr>
</tbody>
</table>

Useful screen area (approx.) 1905 cm²

Spacing between centres of adjacent phosphor dot triads (approx.) 0.81 mm ≤

Light transmission (approx.) 52 %

FOCUSING

Electrostatic

DEFLECTION

Magnetic

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal deflection angle</td>
<td>90 deg</td>
</tr>
<tr>
<td>Horizontal deflection angle</td>
<td>79 deg</td>
</tr>
<tr>
<td>Vertical deflection angle</td>
<td>62 deg</td>
</tr>
</tbody>
</table>

CONVERGENCE

Magnetic

CAPACITANCES (approx.)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cₙ-all (each gun)</td>
<td>7.0 pF</td>
</tr>
<tr>
<td>c(kR+kG+kB)-all</td>
<td>15 pF</td>
</tr>
<tr>
<td>cₖR-all</td>
<td>5.0 pF</td>
</tr>
<tr>
<td>cₖG-all</td>
<td>5.0 pF</td>
</tr>
<tr>
<td>cₖB-all</td>
<td>5.0 pF</td>
</tr>
<tr>
<td>cₐ2-all</td>
<td>7.0 pF</td>
</tr>
<tr>
<td>cₐ3+a₄-M</td>
<td>2000 to 2500 pF</td>
</tr>
<tr>
<td>cₐ3+a₄-B</td>
<td>500 pF</td>
</tr>
</tbody>
</table>

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating, M, which must be connected to chassis, and the capacitance of this coating to the final anode is used to provide smoothing for the e.h.t. supply. The electrical connection to this coating must be made within the area specified on the tube outline drawing.
REFERENCE LINE GAUGE

See page 10.

MOUNTING POSITION

Any. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 55mm diameter which is centred upon the perpendicular from the centre of the face.

MAGNETIC SHIELDING

Magnetic shielding must be provided to minimise the effects of extraneous magnetic fields, including the earth's magnetic field. This shielding, in the form of a metal shell extending 28cm over the cone of the tube measured from the centre of the screen, should be constructed of cold-rolled mild steel of 0.5mm minimum thickness. The magnetic shield should be connected to the outer conductive coating. See page 10 for physical dimensions.

RATINGS (DESIGN CENTRE SYSTEM)

\[
\begin{align*}
V_{a3+a4_{\text{max.}}} & \quad (\text{absolute rating}) \quad (\text{see notes 2 and 3}) & 27.5 & \text{kV} \\
V_{a3+a4_{\text{min.}}} & \quad (\text{absolute rating}) \quad (\text{see note 4}) & 20 & \text{kV} \\
I_{a3+a4_{\text{long term average max. for three}}_{\text{guns: see note 5}}} & & 1.0 & \text{mA} \\
V_{a2_{\text{max.}}} & \quad (\text{see note 3}) & 6.0 & \text{kV} \\
v_{a1_{\text{max.}}} & \quad (pk) & 1.0 & \text{kV} \\
-V_{g_{\text{max.}}} & & 400 & \text{V} \\
V_{g_{\text{max.}}} & & 0 & \text{V} \\
V_{h-k_{\text{max.}}} & \quad (\text{see note 6})_{\text{Cathode positive}} & & \\
& \quad \text{d.c. max.} & 250 & \text{V} \\
& \quad \text{pk max.} & 300 & \text{V} \\
& \quad \text{Cathode negative} & & \\
& \quad \text{d.c. max.} & 135 & \text{V} \\
& \quad \text{pk max.} & 180 & \text{V} \\
R_{k-k_{\text{max.}}} & & 750 & \text{k\Omega}
\end{align*}
\]
EQUIPMENT DESIGN VALUES (each gun if applicable)

Valid for $V_{a3+a4} = 20$ to 27.5kV

V_{a2}

V_{a1}

V_g

Variation in cut-off voltage between guns

Minimum value is at least 65% of the maximum value.

I_{a2}

-15 to +15 μA

I_{a1}

-5 to +5 μA

I_g at $V_g = -150V$

-5 to +5 μA

To produce white of colour co-ordinates:

x 0.310 0.265 0.281

y 0.316 0.290 0.311

Percentage of total anode current supplied by each gun (typical)

Red gun 43.5 27.9 32.2 %

Green gun 30.0 34.9 35.6 %

Blue gun 26.5 37.2 32.2 %

Ratio of cathode currents

Red gun to green gun min. 1.05 0.60 0.65

av. 1.45 0.80 0.90

max. 2.00 1.10 1.25

Red gun to blue gun min. 1.20 0.55 0.75

av. 1.65 0.75 1.00

max. 2.25 1.05 1.35

Maximum electron beam shift required from purity magnets ± 0.13 mm

Maximum required raster shift ± 15 mm

Maximum lateral convergence shift of blue beam with respect to the converged red and green beams ± 6.5 mm

Maximum radial convergence shift, excluding effects of dynamic convergence (each beam) ± 9.5 mm

WEIGHT

Tube alone (approx.) 18.8 kg
NOTES

1. For maximum cathode life, it is recommended that the heater supply be regulated at 6.3V.

2. The tube does not emit X-radiation above the internationally accepted maximum dosage rate if it is operated from an e.h.t. source supplying an absolute maximum voltage of 27.5kV at zero beam current and with an internal impedance ≥500kΩ.

3. Adequate precautions should be taken to ensure that the receiver is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube. In view of the high voltage on a2, adequate precautions should be taken to ensure freedom from flashover on all connections to this electrode.

4. Operation at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.

5. The limiting value "long term average maximum current" of 1.0mA will be met provided a device is incorporated in the circuit to limit the short term average current to 1.5mA.

6. In order to avoid excessive hum the a.c. component of \(V_{h-k} \) should be as low as possible (< 20V r.m.s.).

 During an equipment warm-up period not exceeding 15 seconds \(V_{h-k} \) (pk) max. (cathode positive) is allowed to rise to 410V. Between 15 and 45 seconds after switching on a decrease in \(V_{h-k} \) (pk) max. (cathode positive) proportional with time from 410 to 250V is permissible.

7. The metal band (B) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver.

8. The dynamic convergence to be effected by currents of approximately parabolic waveshape synchronised with scanning.
Permissible contact area

Determined by the plane of the upper edge of the step on the reference line gauge when the gauge is resting on the cone.

* Diagonal opening of metal rimband = 602 min.
Eccentricity with respect to centre of screen = 1.5 max.

Recessed cavity connector CT8

Neck dia 36.5 ± 1.6

All dimensions in mm
Useful screen area

Internal magnetic shield

Location of radial convergence pole pieces viewed from screen end of guns

All dimensions in mm
Dimensions of metal band

Opening of rim band

Cement

2 max (meniscus)

Metal rim band

RIM DETAIL

633max

607.2max diagonal

528.25max major axis

419max minor axis

50.1 ±2.0

27.4 ±2.0

13.1 ±2.0

38.5 ±2.5

One of the four lugs may deviate 2mm max. from the plane through the three other lugs. This deviation is incorporated in the ±2.5 tolerance.

All dimensions in mm
The bolts to be used for mounting the tube must be within the circles of 9.5mm diameter shown in the template drawing.

All dimensions in mm
Outline of tube with components

Reference line gauge

- These dimensions define extent of 29.21R

All dimensions in mm

April 1969
As J.E.D.E.C. B12-244 Base but with shorter spigot

View looking from base
Dimensions for Maximum Cone Contour Drawing

<table>
<thead>
<tr>
<th>Section</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>25°</th>
<th>30°</th>
<th>32°30'</th>
<th>35°22'</th>
<th>37°30'</th>
<th>40°</th>
<th>45°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>long axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diagonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>82.5</td>
<td>82.6</td>
<td>83.0</td>
<td>82.8</td>
</tr>
<tr>
<td>2</td>
<td>107.6</td>
<td>107.4</td>
<td>106.7</td>
<td>106.1</td>
<td>105.7</td>
<td>105.5</td>
<td>105.2</td>
<td>105.1</td>
<td>105.0</td>
<td>104.7</td>
<td>104.5</td>
<td>104.3</td>
<td>104.3</td>
<td>104.1</td>
<td>115.5</td>
</tr>
<tr>
<td>3</td>
<td>129.3</td>
<td>128.5</td>
<td>128.0</td>
<td>127.3</td>
<td>126.6</td>
<td>125.8</td>
<td>124.8</td>
<td>124.0</td>
<td>123.2</td>
<td>122.2</td>
<td>121.4</td>
<td>122.5</td>
<td>122.5</td>
<td>126.9</td>
<td>130.2</td>
</tr>
<tr>
<td>4</td>
<td>167.4</td>
<td>167.2</td>
<td>166.0</td>
<td>165.0</td>
<td>164.8</td>
<td>164.2</td>
<td>162.6</td>
<td>161.2</td>
<td>159.6</td>
<td>157.2</td>
<td>156.2</td>
<td>154.3</td>
<td>154.3</td>
<td>154.3</td>
<td>149.0</td>
</tr>
<tr>
<td>5</td>
<td>162.8</td>
<td>162.8</td>
<td>161.6</td>
<td>160.7</td>
<td>159.3</td>
<td>158.4</td>
<td>157.7</td>
<td>156.2</td>
<td>154.3</td>
<td>147.7</td>
<td>145.0</td>
<td>146.4</td>
<td>146.4</td>
<td>146.4</td>
<td>145.0</td>
</tr>
<tr>
<td>6</td>
<td>176.3</td>
<td>176.3</td>
<td>175.4</td>
<td>174.0</td>
<td>173.5</td>
<td>171.6</td>
<td>169.9</td>
<td>167.9</td>
<td>162.1</td>
<td>159.0</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
<td>154.4</td>
<td>155.3</td>
</tr>
<tr>
<td>7</td>
<td>188.2</td>
<td>188.2</td>
<td>187.6</td>
<td>187.2</td>
<td>186.6</td>
<td>185.2</td>
<td>183.4</td>
<td>181.1</td>
<td>175.4</td>
<td>169.9</td>
<td>163.5</td>
<td>161.2</td>
<td>161.2</td>
<td>161.2</td>
<td>161.5</td>
</tr>
<tr>
<td>8</td>
<td>198.8</td>
<td>199.0</td>
<td>199.2</td>
<td>199.4</td>
<td>199.6</td>
<td>199.1</td>
<td>197.8</td>
<td>196.1</td>
<td>193.4</td>
<td>186.9</td>
<td>180.3</td>
<td>171.9</td>
<td>170.0</td>
<td>167.4</td>
<td>167.2</td>
</tr>
<tr>
<td>9</td>
<td>208.2</td>
<td>208.8</td>
<td>209.6</td>
<td>210.3</td>
<td>211.1</td>
<td>210.9</td>
<td>209.7</td>
<td>207.8</td>
<td>205.3</td>
<td>197.9</td>
<td>190.3</td>
<td>179.7</td>
<td>174.4</td>
<td>172.9</td>
<td>172.7</td>
</tr>
<tr>
<td>10</td>
<td>216.9</td>
<td>217.9</td>
<td>219.2</td>
<td>220.5</td>
<td>222.2</td>
<td>222.2</td>
<td>221.3</td>
<td>213.9</td>
<td>216.1</td>
<td>208.0</td>
<td>199.4</td>
<td>187.2</td>
<td>180.8</td>
<td>178.2</td>
<td>178.1</td>
</tr>
<tr>
<td>11</td>
<td>224.7</td>
<td>225.6</td>
<td>227.7</td>
<td>229.7</td>
<td>231.9</td>
<td>232.2</td>
<td>231.6</td>
<td>229.6</td>
<td>226.4</td>
<td>217.5</td>
<td>208.0</td>
<td>194.4</td>
<td>186.9</td>
<td>183.5</td>
<td>182.9</td>
</tr>
<tr>
<td>12</td>
<td>231.9</td>
<td>232.9</td>
<td>233.9</td>
<td>238.5</td>
<td>241.4</td>
<td>242.1</td>
<td>241.9</td>
<td>240.1</td>
<td>237.0</td>
<td>226.9</td>
<td>216.4</td>
<td>201.5</td>
<td>191.5</td>
<td>188.6</td>
<td>187.7</td>
</tr>
<tr>
<td>13</td>
<td>238.2</td>
<td>239.7</td>
<td>243.6</td>
<td>246.8</td>
<td>250.5</td>
<td>251.7</td>
<td>251.9</td>
<td>250.4</td>
<td>247.0</td>
<td>238.0</td>
<td>224.5</td>
<td>208.3</td>
<td>198.0</td>
<td>193.4</td>
<td>192.7</td>
</tr>
<tr>
<td>14</td>
<td>244.4</td>
<td>246.3</td>
<td>251.0</td>
<td>254.8</td>
<td>259.5</td>
<td>261.3</td>
<td>261.8</td>
<td>260.5</td>
<td>257.1</td>
<td>245.5</td>
<td>238.6</td>
<td>214.8</td>
<td>203.4</td>
<td>196.8</td>
<td>196.8</td>
</tr>
<tr>
<td>15</td>
<td>250.3</td>
<td>252.2</td>
<td>258.9</td>
<td>262.3</td>
<td>268.1</td>
<td>270.5</td>
<td>271.3</td>
<td>270.1</td>
<td>266.3</td>
<td>254.0</td>
<td>240.4</td>
<td>220.9</td>
<td>208.5</td>
<td>202.4</td>
<td>200.3</td>
</tr>
<tr>
<td>16</td>
<td>256.1</td>
<td>258.2</td>
<td>264.9</td>
<td>270.0</td>
<td>276.6</td>
<td>279.6</td>
<td>280.7</td>
<td>279.3</td>
<td>275.4</td>
<td>262.4</td>
<td>247.8</td>
<td>226.8</td>
<td>213.7</td>
<td>206.6</td>
<td>204.1</td>
</tr>
<tr>
<td>17</td>
<td>260.7</td>
<td>262.4</td>
<td>270.8</td>
<td>278.2</td>
<td>284.7</td>
<td>287.9</td>
<td>289.3</td>
<td>287.9</td>
<td>283.9</td>
<td>270.0</td>
<td>254.7</td>
<td>232.3</td>
<td>218.5</td>
<td>210.5</td>
<td>207.7</td>
</tr>
<tr>
<td>18</td>
<td>265.3</td>
<td>268.3</td>
<td>276.4</td>
<td>283.3</td>
<td>292.4</td>
<td>296.7</td>
<td>297.6</td>
<td>296.3</td>
<td>292.1</td>
<td>282.6</td>
<td>261.0</td>
<td>237.6</td>
<td>223.1</td>
<td>214.3</td>
<td>212.2</td>
</tr>
<tr>
<td>19</td>
<td>269.4</td>
<td>272.4</td>
<td>281.5</td>
<td>289.0</td>
<td>299.0</td>
<td>302.8</td>
<td>305.2</td>
<td>304.2</td>
<td>299.5</td>
<td>283.4</td>
<td>266.7</td>
<td>242.5</td>
<td>227.2</td>
<td>217.9</td>
<td>214.7</td>
</tr>
<tr>
<td>20</td>
<td>272.0</td>
<td>275.2</td>
<td>285.4</td>
<td>293.6</td>
<td>303.8</td>
<td>308.8</td>
<td>311.1</td>
<td>310.3</td>
<td>305.5</td>
<td>288.4</td>
<td>271.2</td>
<td>246.0</td>
<td>229.8</td>
<td>220.9</td>
<td>217.8</td>
</tr>
<tr>
<td>21</td>
<td>273.2</td>
<td>276.6</td>
<td>287.3</td>
<td>295.6</td>
<td>306.3</td>
<td>311.3</td>
<td>313.3</td>
<td>312.2</td>
<td>305.0</td>
<td>290.0</td>
<td>272.7</td>
<td>247.3</td>
<td>231.1</td>
<td>222.2</td>
<td>219.3</td>
</tr>
</tbody>
</table>

All dimensions in mm
BRIGHTNESS AT CENTRE OF SCREEN AS A FUNCTION OF TOTAL CURRENT
FOR WHITE OF COLOUR COORDINATES x = 0.281, y = 0.311
FINAL ANODE CURRENT PLOTTED AGAINST GRID VOLTAGE. GRID MODULATION

FINAL ANODE CURRENT PLOTTED AGAINST CATHODE-TO-GRID VOLTAGE. CATHODE MODULATION
CUT-OFF DESIGN CHART

A63-11X

V_{a3+a4} = 20 to 27.5 kV

V_g

CUT-OFF (V)

Max
Average
Min

V_a1 (V)

0
200
400
600
800

25
50
75
100
125
150
175
200

A43-11X Page 16