TELEVISION TUBE

QUICK REFERENCE DATA

47cm (19 in) direct viewing television tube with metal backed screen and reinforced envelope. A separate safety screen is not required. This tube is electrically identical to the A47-14W.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deflection</td>
<td>110 deg</td>
</tr>
<tr>
<td>Focusing</td>
<td>Electrostatic</td>
</tr>
<tr>
<td>Light transmission (approx.)</td>
<td>50 %</td>
</tr>
<tr>
<td>Maximum overall length</td>
<td>30.9 cm</td>
</tr>
</tbody>
</table>

This data should be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS - CATHODE RAY TUBES, which precede this section of the handbook.

HEATER

Suitable for series or parallel operation

\[
\begin{align*}
V_h & = 6.3 \text{ V} \\
I_h & = 300 \text{ mA}
\end{align*}
\]

The limits of heater voltage and current are contained in 'General Operational Recommendations - Cathode Ray Tubes'.

Note - (applies to series operation only). The surge heater voltage must not exceed 9.5V r.m.s. when the supply is switched on. A current limiting device may be necessary in the circuit, to ensure that this voltage is not exceeded.

OPERATING CONDITIONS

\[
\begin{align*}
V_{a2+a4} & = 20 \text{ kV} \\
V_{a3} & = 0 \text{ to } 400 \text{ V} \\
V_{a1} & = 0 \text{ to } 400 \text{ to } 500 \text{ V} \\
V_{g} & = -40 \text{ to } -77 \text{ to } -50 \text{ to } -93 \text{ V} \\
V_{k} & = 36 \text{ to } 66 \text{ to } 45 \text{ to } 80 \text{ V}
\end{align*}
\]

*For cathode modulation, all voltages are measured with respect to the grid.
SCREEN

Metal backed
Fluorescent colour White
Light transmission (approx.) 50 %
Useful screen area see page D6

FOCUSING

Electrostatic
The range of focus voltages shown in 'OPERATING CONDITIONS' results in optimum overall focus at a beam current of 250μA.

DEFLECTION

Double magnetic
The deflection coils should be designed so that their internal contour is in accordance with J.E.D.E.C. gauge 126, and should provide a pull-back of 4mm on a nominal tube.

CAPACITANCES

c
\[c_{g-all} \quad 6.0 \quad \text{pF}\]
c
\[c_{k-all} \quad 4.0 \quad \text{pF}\]
c
\[c_{a2+a4-M} \quad 1000 \text{ to } 1500 \quad \text{pF}\]
c
\[c_{a2+a4-B} \quad 250 \quad \text{pF}\]

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating, M, which must be earthed, and the capacitance of this to the final anode is used to provide smoothing for the e.h.t. supply. The tube marking and warning labels are on the side of the cone opposite the final anode connector and this side should not be used for making contact to the external conductive coating.

RASTER CENTRING

See note under this heading in 'General Operational Recommendations - Cathode Ray Tubes'.

Centring magnet field intensity 0 to 10 Gs

Maximum distance of centre of centring field from reference line 57 mm

Adjustment of the centring magnet should not be such that a general reduction in brightness of the raster occurs.

REFERENCE LINE GAUGE

J.E.D.E.C. 126. For details see 'General Operational Recommendations - Cathode Ray Tubes'.

FEBRUARY 1966

Mullard
MOUNTING POSITION

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40mm diameter which is centred upon the perpendicular from the centre of the face.

This tube is fitted with a pin protector in order to avoid damage to the glass base due to bending of the base pins whilst handling the tube.

It is advisable to keep this pin protector on the base until it can be replaced by the socket after installation of the tube in any equipment.

RATINGS (DESIGN CENTRE SYSTEM)

\[
\begin{align*}
V_{a2+a4} & \max \text{ (at } I_{a2+a4} = 0 \text{)} (\text{see note 1}) & 20 & \text{kV}\< \vspace{1mm} \\
V_{a2+a4} & \min & 13 & \text{kV}\vspace{1mm} \\
+V_{a3} & \max & 1.0 & \text{kV}\vspace{1mm} \\
-V_{a3} & \max & 500 & \text{V}\vspace{1mm} \\
+V_{a3(pk)} & \max (\text{see note 2}) & 2.5 & \text{kV}\vspace{1mm} \\
V_{a1} & \max & 700 & \text{V}\vspace{1mm} \\
V_{a1} & \min & 350 & \text{V}\vspace{1mm} \\
-V_{g(pk)} & \max (\text{see note 2}) & 400 & \text{V}\vspace{1mm} \\
-V_{g} & \max (\text{see note 3}) & 150 & \text{V}\vspace{1mm} \\
+I_{a3} & \max & 25 & \text{μA}\vspace{1mm} \\
+I_{a1} & \max & 5 & \text{μA}\vspace{1mm} \\
V_{h-k} & (\text{see note 4}) & \text{Cathode positive} & \vspace{1mm} \\
& & 250 & \text{V}\vspace{1mm} \\
& & 300 & \text{V}\vspace{1mm} \\
\text{Cathode negative} & \vspace{1mm} \\
& & 135 & \text{V}\vspace{1mm} \\
& & 180 & \text{V}\vspace{1mm} \\
R_{h-k} & \max & 1.0 & \text{MΩ}\vspace{1mm} \\
Z_{k-e} & \max (f = 50c/s) & 100 & \text{kΩ}\vspace{1mm} \\
R_{g-k} & \max & 1.5 & \text{MΩ}\vspace{1mm} \\
-Z_{g-k} & \max (f = 50c/s) & 500 & \text{kΩ}
\end{align*}
\]

FEBRUARY 1966
1. Adequate precautions should be taken to ensure that the receiver is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

2. Maximum pulse duration 22% of one cycle with a maximum of 1.5ms.

3. The d.c. value of bias must not be such as to allow the grid to become positive with respect to the cathode, except during the period immediately after switching the receiver on or off when it may be allowed to rise to +2V.

 It is advisable to limit the positive excursion of the video signal to +5V(pk) max. This may be achieved automatically by the series connection of a 10kΩ resistor.

4. During an equipment warm-up period not exceeding 15 seconds $v_{h-k(pk)}$ max. (cathode positive) is allowed to rise to 410V. Between 15 and 45 seconds after switching on a decrease in $v_{h-k(pk)}$ max. (cathode positive) proportional with time from 410V to 250V is permissible.

5. The metal band (B) must be connected to the chassis via a 2MΩ resistor. Soldering tags are provided for this purpose.

 The mounting lugs will not necessarily be in electrical contact with the metal band.

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 20kV.

WEIGHT

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube alone</td>
<td>7.5 kg</td>
<td>16.5 lb</td>
</tr>
</tbody>
</table>
TELEVISION TUBE A47-11W

Determined by the plane of the upper edge of the reference line gauge JEDEC 126, when the gauge is resting on the cone.

End of closely controlled zone

* Eccentricity with respect to centre of screen 1.5 max

All dimensions in mm.
All dimensions in mm
TELEVISION TUBE

A47-11W

One of the four lugs may deviate 2mm max from the plane through the three other lugs. This deviation is incorporated in the ±2.5 tolerance.

All dimensions in mm

FEVERUARY 1966
MAXIMUM CONE CONTOURS
Dimensions for Maximum Cone Contour Drawing

Table

<table>
<thead>
<tr>
<th>Section</th>
<th>0° long</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>35° 22' diagonal</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90° short</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82.5</td>
</tr>
<tr>
<td>2</td>
<td>111.2</td>
<td>110.8</td>
<td>108.8</td>
<td>107.7</td>
<td>106.3</td>
<td>103.7</td>
<td>100.6</td>
<td>98.1</td>
<td>96.2</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>128.5</td>
<td>127.3</td>
<td>125.5</td>
<td>124.0</td>
<td>122.2</td>
<td>117.9</td>
<td>113.2</td>
<td>108.9</td>
<td>106.6</td>
<td>106.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>142.2</td>
<td>140.3</td>
<td>138.8</td>
<td>137.5</td>
<td>135.9</td>
<td>130.6</td>
<td>124.4</td>
<td>119.0</td>
<td>115.8</td>
<td>115.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>152.1</td>
<td>150.9</td>
<td>150.6</td>
<td>149.5</td>
<td>147.6</td>
<td>140.6</td>
<td>133.4</td>
<td>127.2</td>
<td>123.6</td>
<td>122.7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>166.7</td>
<td>167.6</td>
<td>169.5</td>
<td>169.1</td>
<td>167.0</td>
<td>158.1</td>
<td>148.2</td>
<td>140.9</td>
<td>136.5</td>
<td>134.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>178.1</td>
<td>178.6</td>
<td>180.6</td>
<td>184.7</td>
<td>185.7</td>
<td>183.1</td>
<td>172.1</td>
<td>160.7</td>
<td>151.7</td>
<td>146.3</td>
<td>144.7</td>
</tr>
<tr>
<td>8</td>
<td>187.5</td>
<td>188.3</td>
<td>191.6</td>
<td>198.0</td>
<td>200.1</td>
<td>197.2</td>
<td>183.7</td>
<td>170.3</td>
<td>160.2</td>
<td>154.4</td>
<td>152.5</td>
</tr>
<tr>
<td>9</td>
<td>195.4</td>
<td>196.6</td>
<td>201.7</td>
<td>210.3</td>
<td>213.7</td>
<td>210.1</td>
<td>194.1</td>
<td>178.8</td>
<td>167.9</td>
<td>161.4</td>
<td>159.3</td>
</tr>
<tr>
<td>10</td>
<td>202.1</td>
<td>203.9</td>
<td>210.1</td>
<td>221.2</td>
<td>225.3</td>
<td>221.1</td>
<td>202.8</td>
<td>185.8</td>
<td>174.4</td>
<td>167.5</td>
<td>165.4</td>
</tr>
<tr>
<td>11</td>
<td>208.4</td>
<td>210.4</td>
<td>217.8</td>
<td>230.5</td>
<td>235.3</td>
<td>231.2</td>
<td>209.9</td>
<td>192.0</td>
<td>180.0</td>
<td>172.7</td>
<td>170.5</td>
</tr>
<tr>
<td>12</td>
<td>213.6</td>
<td>216.1</td>
<td>223.9</td>
<td>237.0</td>
<td>241.8</td>
<td>238.1</td>
<td>215.4</td>
<td>197.2</td>
<td>184.6</td>
<td>177.3</td>
<td>175.0</td>
</tr>
<tr>
<td>13</td>
<td>215.8</td>
<td>218.2</td>
<td>225.8</td>
<td>239.2</td>
<td>244.0</td>
<td>240.4</td>
<td>218.1</td>
<td>199.7</td>
<td>186.6</td>
<td>179.3</td>
<td>177.0</td>
</tr>
</tbody>
</table>

All dimensions in mm
The bolts to be used for mounting the tube must be within the circles of 8.5mm diameter shown in the template drawing.
FINAL ANODE CURRENT PLOTTED AGAINST GRID VOLTAGE.
GRID MODULATION.
FINAL ANODE CURRENT PLOTTED AGAINST CATHODE-TO-GRID VOLTAGE. CATHODE MODULATION.
LIMITS OF CATHODE-TO-GRID CUT-OFF VOLTAGE PLOTTED AGAINST FIRST ANODE-TO-GRID VOLTAGE. CATHODE MODULATION.
LIMITS OF GRID CUT-OFF VOLTAGE PLOTTED AGAINST FIRST ANODE VOLTAGE. GRID MODULATION.