QUICK REFERENCE DATA

44cm (17in) direct viewing television tube with metal backed screen and reinforced envelope. A separate safety screen is not required. Suitable for use in receivers with push-through presentation. This tube is fitted with a ring trap base.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deflection angle</td>
<td>110</td>
<td>deg</td>
</tr>
<tr>
<td>Focusing</td>
<td>Electrostatic</td>
<td></td>
</tr>
<tr>
<td>Light transmission</td>
<td>48</td>
<td>%</td>
</tr>
<tr>
<td>Maximum overall length</td>
<td>291</td>
<td>mm</td>
</tr>
</tbody>
</table>

This data should be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS—CATHODE RAY TUBES

HEATER

Suitable for series or parallel operation

\[
\begin{align*}
V_h & = 6.3 \text{ V} \\
I_h & = 300 \text{ mA}
\end{align*}
\]

The limits of heater voltage and current are contained in 'General Operational Recommendations—Cathode Ray Tubes'.

Note:- (Applies to series operation only)

The surge heater voltage must not exceed 9.5V r.m.s. when the supply is switched on. A current limiting device may be necessary in the circuit, to ensure that this voltage is not exceeded.

OPERATING CONDITIONS

\[
\begin{align*}
V_{a2+a4} & = 18 \text{ kV} \\
V_{a3} & = 0 \text{ to } 400 \text{ V} \\
V_{a1} & = 400 \text{ V} \\
V_g & = -40 \text{ to } -77 \text{ V} \\
*V_k & = 36 \text{ to } 66 \text{ V}
\end{align*}
\]

*For cathode modulation, all voltages are measured with respect to the grid.
SCREEN (Metal backed)

Fluorescent colour White
Light transmission 48 %
Useful screen area See page 6

FOCUSHING (Electrostatic)

The range of focus voltage shown in 'Operating Conditions' results in optimum overall focus at a beam current of 250μA.

DEFLECTION (Magnetic)

Diagonal deflection angle 110 deg
Horizontal deflection angle 100 deg
Vertical deflection angle 83 deg

CAPACITANCES

\(c_{g-all} \) 7.0 pF
\(c_{k-all} \) 5.0 pF
\(c_{a2+a4-M} \) 700 to 1300 pF
\(c_{a2+a4-B} \) 200 pF

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating, M, which must be connected to chassis, and the capacitance of this coating to the final anode is used to provide smoothing for the e.h.t. supply. The electrical connection to this coating must be made within the area specified on the tube outline drawing.

RING TRAP

For flashover protection to the receiver, parallel spark gaps are included for all the pins in the base of this tube, and the common connection is made to pin 5. These spark gaps are intended as part of a system for full flashover protection. A direct connection must always be made from pin 5 to the external conductive coating. Any electrode supplied directly from a high energy source (such as the H.T. line) should be provided with a series resistor.

RASTER CENTRING

See note under this heading in 'General Operational Recommendations-Cathode Ray Tubes'.

Centring magnet field intensity 0 to 800 A/m

Maximum distance between centre of centring field and reference line 57 mm

Adjustment of the centring magnet should not be such that a general reduction in brightness of the raster occurs.

REFERENCE LINE GAUGE

J.E.D.E.C. 126. For details see 'General Operational Recommendations-Cathode Ray Tubes'.
MOUNTING POSITION

Any. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40mm diameter which is centred on the perpendicular from the centre of the face.

This tube is fitted with a pin protector in order to avoid damage to the glass base due to bending of the base pins whilst handling the tube.

It is advisable to keep this pin protector on the base until it can be replaced by the socket after installation of the tube in any equipment.

RATINGS (DESIGN CENTRE SYSTEM)

\[V_{a2+a4} \text{ max. (at } I_{a2+a4} = 0) \text{ (see note 1)} = 18 \text{ kV} \]
\[V_{a2+a4} \text{ min.} = 13 \text{ kV} \]
\[+V_{a3} \text{ max.} = 1.0 \text{ kV} \]
\[-V_{a3} \text{ max.} = 500 \text{ V} \]
\[V_{a1} \text{ max.} = 700 \text{ V} \]
\[V_{a1} \text{ min.} = 350 \text{ V} \]
\[-v_{g(pk)} \text{ max. (see note 2)} = 400 \text{ V} \]
\[-V_{g} \text{ max. (see note 3)} = 150 \text{ V} \]
\[+I_{a3} \text{ max.} = 25 \mu\text{A} \]
\[+I_{a1} \text{ max.} = 5 \mu\text{A} \]
\[V_{h-k} \text{ (see note 4)} \]

Cathode positive
\[\text{d.c. max.} = 250 \text{ V} \]
\[\text{pk max.} = 300 \text{ V} \]

Cathode negative
\[\text{d.c. max.} = 135 \text{ V} \]
\[\text{pk max.} = 180 \text{ V} \]

\[R_{h-k} \text{ max.} = 1.0 \text{ M\Omega} \]
\[Z_{k-e} \text{ max. (f=50Hz)} = 100 \text{ k\Omega} \]
\[R_{g-k} \text{ max.} = 1.5 \text{ M\Omega} \]
\[Z_{g-k} \text{ max. (f=50Hz)} = 500 \text{ k\Omega} \]
NOTES

1. Adequate precautions should be taken to ensure that the receiver is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

2. Maximum pulse duration 22% of one cycle with a maximum of 1.5ms.

3. The d.c. value of bias must not be such as to allow the grid to become positive with respect to the cathode, except during the period immediately after switching the receiver on or off when it may be allowed to rise to +2V.

 It is advisable to limit the positive excursion of the video signal to +5V(pk) max. This may be achieved automatically by the series connection of a 10kΩ resistor.

4. During an equipment warm-up period not exceeding 15 seconds, \(v_{h-k(pk)} \) max. (cathode positive) is allowed to rise to 410V. Between 15 and 45 seconds after switching on, a decrease in \(v_{h-k(pk)} \) max. (cathode positive) proportional with time from 410V to 250V is permissible.

5. The metal band (B) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2.0MΩ.

 The mounting lugs will be in electrical contact with the metal band.

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 18kV.

WEIGHT

| Tube alone (approx.) | 5.5 kg |
TELEVISION TUBE

A44-120W/R

End of closely
controlled zone

Metal band B
External conductive
cooling M

Determined by the plane
of the upper edge of the
step on the reference line
gauge JEDEC 126 when the
gauge is resting on the cone

379 max
371.5 ± 20
(bulb)

174.5
± 5.0

48 min
32 max

284.5
± 6.5

305 max
297 ± 20
(bulb)

698.5 R

83°

Recossed cavity
connector CT8

60 mm

Neck dia. 28.6 ± 0.6

A44-120W/R Page 5

FEBRUARY 1969

All dimensions in mm
Useful screen area shown shaded.

Bulb dimensions

All dimensions in mm

FEBRUARY 1969

Mullard

A44-120W/R Page 6
TELEVISION TUBE

A44-120W/R

Maximum radii of the outside of the tension band + nominal bulb radius + 4.0

One of the four lugs may deviate 2mm max from the plane through the other three lugs.

All dimensions in mm.
Dimensions for Maximum Cone Contour Drawing (Page 8)

<table>
<thead>
<tr>
<th>Section</th>
<th>Nominal distance from point "Z"</th>
<th>Long axis</th>
<th>Distance from centre (max. values)</th>
<th>Short axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0°</td>
<td>10° 20° 30° 33° 30° 40° 44° 50° 60° 70° 80° 90°</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td>60.0</td>
<td>60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>117.3</td>
<td>95.9</td>
<td>95.2 93.0 92.3 92.1 92.3 92.6 93.1 93.8 94.6 94.9 95.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>107.3</td>
<td>118.1</td>
<td>117.8 118.3 118.3 118.3 119.2 117.8 117.7 117.2 115.5 113.3 111.2 109.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>97.3</td>
<td>135.0</td>
<td>136.1 138.3 139.9 141.0 141.6 141.1 138.5 135.4 130.5 125.6 121.8 120.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>87.3</td>
<td>149.5</td>
<td>151.1 155.1 159.1 161.3 162.0 161.5 157.5 151.0 142.0 135.8 130.8 129.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>77.3</td>
<td>162.5</td>
<td>164.0 168.8 176.0 179.0 179.5 178.0 173.5 163.4 150.8 143.3 138.3 136.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67.3</td>
<td>172.5</td>
<td>174.4 180.1 190.0 194.1 196.3 194.9 186.8 174.5 159.1 149.3 143.9 141.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>57.3</td>
<td>179.7</td>
<td>183.1 189.3 201.1 207.4 210.9 206.1 196.0 182.8 165.5 154.0 147.9 145.6</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions in millimetres
The bolts to be used for mounting the tubes must be within the circles of 7.5mm diameter shown in the template drawing.
FINAL ANODE CURRENT PLOTTED AGAINST GRID VOLTAGE.
GRID MODULATION
FINAL ANODE CURRENT PLOTTED AGAINST CATHODE-TO-GRID VOLTAGE
CATHODE MODULATION
LIMITS OF CATHODE-TO-GRID CUT-OFF VOLTAGE PLOTTED AGAINST FIRST ANODE-TO-GRID VOLTAGE.
CATHODE MODULATION
LIMITS OF GRID CUT-OFF VOLTAGE PLOTTED AGAINST FIRST ANODE VOLTAGE, GRID MODULATION

V_{a2+a4} = 13 to 18kV