THE 6Y6G IS A BEAM POWER AMPLIFIER HAVING HIGH POWER SENSITIVITY AND HIGH POWER OUTPUT AT COMPARATIVELY LOW DC SUPPLY VOLTAGES.

HEATER CHARACTERISTICS AND RATINGS
DESIGN CENTER VALUES - SEE EIA STANDARD RS-239

AVERAGE CHARACTERISTICS
6.3 VOLTS 1250 MA.

HEATER SUPPLY LIMITS:
VOLTAGE OPERATION 6.3±0.6 VOLTS

MAXIMUM HEATER CATHODE VOLTAGE: *
HEATER NEGATIVE WITH RESPECT TO CATHODE 180 VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE 180 VOLTS

MAXIMUM RATINGS
DESIGN CENTER VALUES - SEE EIA STANDARD RS-239

PLATE VOLTAGE 200 VOLTS
GRID #2 SUPPLY VOLTAGE → 200 VOLTS
GRID #2 VOLTAGE * SEE J5-C4
PLATE DISSIPATION 12.5 WATTS
GRID #2 DISSIPATION 1.75 WATTS
GRID #1 CIRCUIT RESISTANCE *
FIXED BIAS 0.1 MEGOHM
SELF BIAS 0.5 MEGOHM

→ INDICATES A CHANGE.

CONTINUED ON FOLLOWING PAGE
TYPICAL OPERATING CHARACTERISTICS
CLASS A\textsubscript{1} AMPLIFIER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE VOLTAGE</td>
<td>155</td>
<td>200</td>
</tr>
<tr>
<td>GRID #2 VOLTAGE</td>
<td>155</td>
<td>135</td>
</tr>
<tr>
<td>GRID #1 VOLTAGE</td>
<td>-13.5</td>
<td>-14</td>
</tr>
<tr>
<td>PEAK AF GRID #1 VOLTAGE</td>
<td>13.5</td>
<td>14</td>
</tr>
<tr>
<td>PLATE RESISTANCE (APPROX.)</td>
<td>5900</td>
<td>18500</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE</td>
<td>7000</td>
<td>7100</td>
</tr>
<tr>
<td>ZERO-SIGNAL PLATE CURRENT</td>
<td>58</td>
<td>61</td>
</tr>
<tr>
<td>MAXIMUM-SIGNAL PLATE CURRENT</td>
<td>60</td>
<td>66</td>
</tr>
<tr>
<td>ZERO-SIGNAL GRID #2 CURRENT</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>MAXIMUM-SIGNAL GRID #2 CURRENT</td>
<td>11.5</td>
<td>9</td>
</tr>
<tr>
<td>LOAD RESISTANCE</td>
<td>2000</td>
<td>2600</td>
</tr>
<tr>
<td>TOTAL HARMONIC DISTORTION (APPROX.)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>POWER OUTPUT</td>
<td>3.6</td>
<td>6</td>
</tr>
</tbody>
</table>

\[E_{C_1} = 0 \]

\[E_r = 6.3 \text{ Volts} \]

\[E_{C_2} = 195 \text{ Volts} \]
6Y6G

$E_f = 6.3$ Volts
$E_b = 135$ Volts
$E_{c2} = 135$ Volts
$E_{c4} = -13.5$ Volts
$E_{sig} = 9.5$ Volts RMS

POWER OUTPUT (P_o)

HARMONIC DISTORTION IN PER CENT

IN WATTS

LOAD RESISTANCE (R_L) IN OHMS

PLATE (I_b) OR SCREEN (I_{c2}) CURRENT IN MILLIAMPERES

Rated Load

1st Harm.

2nd Harm.

3rd Harm.

P_o