THE 6SL7WGT CONTAINS TWO INDEPENDENT HIGH MU TRIODES IN A T-9 ENVELOPE. IT IS DESIGNED PRIMARILY FOR USE AS RESISTANCE COUPLED AMPLIFIERS. THE TUBE IS INTENDED FOR APPLICATIONS WHERE SEVERE CONDITIONS OF VIBRATION AND MECHANICAL SHOCK ARE ENCOUNTERED.

HEATER CHARACTERISTICS AND RATINGS

ABSOLUTE MAXIMUM VALUES - SEE EIA STANDARD RS-239

- **AVERAGE CHARACTERISTICS**: 6.3 VOLTS
- **LIMITS OF APPLIED VOLTAGE**: 6.3±0.6 VOLTS
- **MAXIMUM HEATER-CATHODE VOLTAGE**: ±100 VOLTS

MAXIMUM RATINGS

ABSOLUTE MAXIMUM VALUES - SEE EIA STANDARD RS-239

- **PLATE VOLTAGE, DC**: 275 VOLTS
- **PLATE DISSIPATION, EACH SECTION**: 1.1 WATTS

ADDITIONAL TESTS AND RATINGS

- IMPACT ACCELERATION TEST
- VIBRATIONAL ACCELERATION TEST
- ALTITUDE RATING: 10,000 FEET

LIMITATIONS BEYOND WHICH NORMAL TUBE PERFORMANCE AND TUBE LIFE MAY BE IMPAIRED.

CONTINUED ON FOLLOWING PAGE
CLASS A RESISTANCE-COUPLED AMPLIFIER

<table>
<thead>
<tr>
<th>Rp (Meg.)</th>
<th>Rs (Meg.)</th>
<th>Rp (Meg.)</th>
<th>Ebb = 90 Volts</th>
<th>Ebb = 180 Volts</th>
<th>Ebb = 300 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>1500</td>
<td>6.6</td>
<td>1200</td>
</tr>
<tr>
<td>0.10</td>
<td>0.24</td>
<td>0.10</td>
<td>1700</td>
<td>31</td>
<td>1400</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.10</td>
<td>3200</td>
<td>35</td>
<td>2200</td>
</tr>
<tr>
<td>0.24</td>
<td>0.51</td>
<td>0.10</td>
<td>3800</td>
<td>39</td>
<td>2700</td>
</tr>
<tr>
<td>0.51</td>
<td>0.51</td>
<td>0.10</td>
<td>7100</td>
<td>39</td>
<td>4400</td>
</tr>
<tr>
<td>0.51</td>
<td>1.0</td>
<td>0.10</td>
<td>8000</td>
<td>41</td>
<td>5200</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.10</td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>0.24</td>
<td>0.51</td>
<td>0.10</td>
<td>0</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>0.51</td>
<td>0.51</td>
<td>0.10</td>
<td>0</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>0.51</td>
<td>1.0</td>
<td>0.10</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:
1. Eo = Maximum RMS voltage output for five percent (5%) harmonic distortion.
2. Gain measured at 2.0 Volts RMS output.
3. For zero-bias data, generator impedance is negligible.

Note: Coupling capacitors (C) should be selected to give desired frequency response. Rp should be adequately bypassed.
$E_f = 6.3$ Volts

$E_b = 250$ Volts

- I_b
- r_p
- μ

Plate Resistance (r_p) - Kilohms

Amplification Factor (μ)