THE 6SA7 AND 6SA7GT ARE PENTAGRID CONVERTERS DESIGNED TO MINIMIZE FREQUENCY DRIFT. THEY ARE INTENDED FOR SERVICE AS COMBINED OSCILLATORS AND MIXERS IN AC, STORAGE BATTERY, AND AC/DC OPERATED SUPERHETERODYNES.

DIRECT INTERELECTRODE CAPACITANCES

<table>
<thead>
<tr>
<th></th>
<th>6SA7</th>
<th>6SA7GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF INPUT: G3 TO (H+K+G1+G2+G4+G5+P)</td>
<td>9.5A</td>
<td>11B</td>
</tr>
<tr>
<td>OSC. INPUT: G4 TO (H+K+G2+G4+G5+P)</td>
<td>7A</td>
<td>8B</td>
</tr>
<tr>
<td>MIXER OUTPUT: P TO (H+K+G2+G4+G5+P)</td>
<td>12A</td>
<td>11B</td>
</tr>
<tr>
<td>GRID #3 TO PLATE: (G3 TO P) MAX.</td>
<td>0.15A</td>
<td>0.6B</td>
</tr>
<tr>
<td>GRID #3 TO GRID #4: (G3 TO G4) MAX.</td>
<td>0.12A</td>
<td>0.4B</td>
</tr>
<tr>
<td>GRID #4 TO PLATE: (G4 TO P) MAX.</td>
<td>0.06A</td>
<td>0.2B</td>
</tr>
<tr>
<td>GRID #4 TO ALL EXCEPT CATHODE: G4 TO (H+G2+G4+G5+P)</td>
<td>4.4</td>
<td>—</td>
</tr>
<tr>
<td>GRID #4 TO ALL EXCEPT CATHODE & GRID #5: G4 TO (H+G2+G4+G5+P)</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>GRID #4 TO CATHODE: (G4 TO K)</td>
<td>2.6</td>
<td>—</td>
</tr>
<tr>
<td>GRID #4 TO CATHODE AND GRID #5: (G4 TO K & G5)</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>CATHODE TO ALL EXCEPT GRID #1: K TO (H+G2+G4+G5+P)</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>CATHODE AND GRID #5 TO ALL EXCEPT GRID #1: K & G5 TO (H+G2+G4+G5+P)</td>
<td>—</td>
<td>14</td>
</tr>
</tbody>
</table>

A with shell connected to cathode.
B with external shield connected to cathode.

CONTINUED ON FOLLOWING PAGE

INDICATES A CHANGE OR ADDITION.
CONTINUED FROM PRECEDING PAGE

RATINGS
INTERPRETED ACCORDING TO RMA STANDARD MB-220

MAXIMUM HEATER VOLTAGE 6.3 VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE 90 VOLTS
MAXIMUM PLATE VOLTAGE 300 VOLTS
MAXIMUM GRIDS #2 & #4 VOLTAGE 100 VOLTS
MAXIMUM GRIDS #2 & #4 SUPPLY VOLTAGE 300 VOLTS
MINIMUM GRID #3 VOLTAGE 0 VOLTS
MAXIMUM PLATE DISSIPATION 1.0 WATT
MAXIMUM GRIDS #2 & #4 DISSIPATION 1.0 WATT
MAXIMUM CATHODE CURRENT 14 MA.

FOR SELF-EXCITED OSCILLATOR.

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CONVERTER SERVICE

<table>
<thead>
<tr>
<th></th>
<th>SELF EXCITATION</th>
<th>SEPARATE EXCITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEATER VOLTAGE</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>HEATER CURRENT</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>PLATE VOLTAGE</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>GRIDS #2 & #4 VOLTAGE</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GRID #3 VOLTAGE</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>GRID #1 RESISTOR</td>
<td>20 000</td>
<td>20 000</td>
</tr>
<tr>
<td>PLATE CURRENT</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>GRIDS #2 & #4 CURRENT</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>GRID #4 CURRENT</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL CATHODE CURRENT</td>
<td>12.3</td>
<td>12.5</td>
</tr>
<tr>
<td>PLATE RESISTANCE (APPROX.)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>CONVERSION TRANSCONDUCTANCE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH E<sub>Q</sub>=2 VOLTS</td>
<td>425</td>
<td>450</td>
</tr>
<tr>
<td>WITH E<sub>Q</sub>=6 VOLTS</td>
<td>---</td>
<td>310</td>
</tr>
<tr>
<td>WITH E<sub>Q</sub>=10 VOLTS</td>
<td>---</td>
<td>75</td>
</tr>
<tr>
<td>WITH E<sub>Q</sub>=35 VOLTS (APPROX.)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

D: HARTLEY OSCILLATOR CIRCUIT WITH A FEEDBACK OF APPROXIMATELY 2 VOLTS PEAK IN THE CATHODE CIRCUIT. VALUES ARE APPROXIMATE.

OSCILLATOR TRANSCONDUCTANCE
NOT OSCILLATING

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID #3 VOLTAGE</td>
<td>0</td>
</tr>
<tr>
<td>GRID #4 VOLTAGE</td>
<td>0</td>
</tr>
<tr>
<td>GRIDS #2 & 4 CONNECTED TO PLATE</td>
<td>100</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE BETWEEN GRID #4 AND GRIDS #2 & 4 CONNECTED TO PLATE</td>
<td>4 500 µMhos</td>
</tr>
</tbody>
</table>

SIMILAR TYPE REFERENCE: Ratings and characteristics somewhat similar to 7Q7.

--- INDICATES A CHANGE OR ADDITION.

COPYRIGHT 1947 BY TUNG-SOL LAMP WORKS INC. ELECTRONIC TUBE DIVISION NEWARK, NEW JERSEY, U. S. A.
6SA7, 6SA7GT

Conversion of Transconductance (g_c) - Micromhos

- $E_k = 0.8$ Volts RMS
- $1.4 = 2$ Volts Peak
- $P = 7\%$
- $E_f = 6.3$ Volts
- $E_{c1} = 250$ Volts
- $E_{c2} \& E_{c4} = 100$ Volts
- $E_{c5} = -1$ Volt
- $R_{g1} = 20,000$ Ohms

P = Percentage Ratio of E_k to $E_k + E_o$ where E_k = Voltage across Oscillator-coil Section between Cathode and Ground. E_o = Oscillator Voltage between Cathode and Grid.

--- g_c for values of E_k
--- g_c for values percent P

- C_o = By-Pass Cond.
- C_{c0} = 50 μuf
- C_{c1} = Padding Cond.
- C_{c2} = Tunning Cond.
- N_c = Total Turns in Osc. Coil
- N_k = Turns in Cathode Section of Oscillator Coil.
- $R_g = 20,000$ Ohms

PLATE 1876
SEPT. 2 1947

COPYRIGHT 1947 BY TUNG-SOL LAMP WORKS INC. ELECTRONIC TUBE DIVISION NEWARK, NEW JERSEY, U.S.A.
6SA7, 6SA7GT

6SA7

$E_f = 6.3 \text{ Volts}$

$E_b = 250 \text{ Volts}$

$E_{C2} \& E_{C4} = 100 \text{ Volts}$

$R_{g1} = 20,000 \text{ Ohms}$

Oscillator Voltage Adjusted to give Grid #1 Current of 0.5 MA.

PLATE
1877
SEPT. 2
1947
6SA7, 6SA7GT

Recommended Min. \(I_{C1} = 0.18 \text{ mA} \).

\[E_f = 6.3 \text{ Volts} \]
\[E_b = 250 \text{ Volts} \]
\[E_{C2} \& E_{C4} = 100 \text{ Volts} \]
\[E_{C3} = -2 \text{ Volts} \]
\[R_{g1} = 20 \, 000 \text{ Ohms} \]

Grid \& Current Varied by Adjustment of Oscillator Voltage

Conversion Transconductance \(g_C \) - Microamperes

Cathode Milliamperes \(I_a \)

GRID I (OSCILLATOR-GRID) MILLIAMPERES \(I_{C1} \)

6SA7

SELF-EXCITATION

\[E_f = 6.3 \text{ Volts} \]
\[E_b = 250 \text{ Volts} \]
\[E_{C2} \& E_{C4} = 100 \text{ Volts} \]
\[E_{C3} = 0 \text{ Volts} \]
\[R_{g1} = 20 \, 000 \text{ Ohms} \]
\[I_{C1} = 0.5 \text{ mA} \]

Conversion Gain =

\[\frac{\text{IF Output Volts}}{\text{RF Input Volts}} \]

Conversion Gain

Resonant Load Impedance - Megohms

PLATE
1876
SEPT. 2
1947

COPYRIGHT 1947 BY TUNG-SOL LAMP WORKS INC. ELECTRONIC TUBE DIVISION NEWARK, NEW JERSEY, U.S.A.