BEAM POWER PENTODE

COATED UNIPOTENTIAL CATHODE
HEATER
6.3 VOLTS 0.9 AMP.
AC OR DC

VERTICAL MOUNTING POSITION
HORIZONTAL OPERATION PERMITTED IF PINS #2 AND #7 ARE IN A VERTICAL PLANE.

THE 6BG6GA IS A BEAM-POWER PENTODE DESIGNED PRIMARILY FOR USE AS THE HORIZONTAL-DEFLECTION AMPLIFIER IN TELEVISION RECEIVERS. ELECTRICALLY AND PHYSICALLY, THE 6BG6GA IS A REPLACEMENT FOR THE 6BG6; IT DIFFERS PRIMARILY FROM THE 6BG6 BY EMPLOYING A STRAIGHT-SIDED T-12 ENVELOPE.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.
WITHOUT EXTERNAL SHIELD

GRID #1 TO PLATE 0.8 pf
INPUT 11.0 pf
OUTPUT 6.0 pf

RATINGS
INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM
HORIZONTAL DEFLECTION AMPLIFIER

MAXIMUM DC PLATE SUPPLY VOLTAGE 700 VOLTS
MAXIMUM PEAK POSITIVE PULSE PLATE VOLTAGE (ABS. MAX.) 6600 VOLTS
MAXIMUM PEAK NEGATIVE PULSE PLATE VOLTAGE 1500 VOLTS
MAXIMUM PLATE DISSIPATION B 20 WATTS
MAXIMUM PEAK NEGATIVE GRID #1 VOLTAGE 300 VOLTS
MAXIMUM GRID #2 VOLTAGE 350 VOLTS
MAXIMUM GRID #2 DISSIPATION 3.2 WATTS
MAXIMUM DC CATHODE CURRENT 110 MA.
MAXIMUM PEAK CATHODE CURRENT 400 MA.
MAXIMUM GRID #1 CIRCUIT RESISTANCE 0.47 MEGOHM
MAXIMUM BULB TEMPERATURE (AT HOTTEST POINT) 210 °C

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS: FEDERAL COMMUNICATIONS COMMISSION", THE DUTY CYCLE OF THE VOLTAGE PULSE MUST NOT EXCEED 15% OF ONE SCANNING CYCLE.

B IN STAGES OPERATING WITH GRID-LEAK BIAS, AN ADEQUATE CATHODE-BIAS RESISTOR OR OTHER SUITABLE MEANS IS REQUIRED TO PROTECT THE TUBE IN THE ABSENCE OF EXCITATION.

→ INDICATES A CHANGE.

CONTINUED ON FOLLOWING PAGE

TUNG-SOL ELECTRIC INC. ELECTRON TUBE DIVISION BLOOMFIELD, NEW JERSEY, U.S.A. JANUARY 1, 1962 PLATE #6756
RATINGS — CONT'D

INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM
HORIZONTAL DEFLECTION AMPLIFIER

MAXIMUM HEATER—CATHODE VOLTAGE:
- **HEATER NEGATIVE WITH RESPECT TO CATHODE**
 - TOTAL DC AND PEAK: 200 VOLTS
- **HEATER POSITIVE WITH RESPECT TO CATHODE**
 - DC: 100 VOLTS
 - TOTAL DC AND PEAK: 200 VOLTS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE VOLTAGE</td>
<td>60</td>
<td>250</td>
</tr>
<tr>
<td>GRID #2 VOLTAGE</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>PLATE CURRENT</td>
<td>180</td>
<td>75</td>
</tr>
<tr>
<td>GRID #2 CURRENT</td>
<td>18</td>
<td>4.0</td>
</tr>
<tr>
<td>GRID #1 VOLTAGE</td>
<td>0</td>
<td>-15</td>
</tr>
<tr>
<td>PLATE RESISTANCE (APPROX.)</td>
<td>25,000</td>
<td>OHMS</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE</td>
<td>6,000</td>
<td>uMHMS</td>
</tr>
<tr>
<td>GRID #1 VOLTAGE (APPROX.) FOR I_b=1.0 MA</td>
<td>-45</td>
<td>VOLTS</td>
</tr>
<tr>
<td>TRIODE AMPLIFICATION FACTOR^c</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

^c TRIODE CONNECTED (GRID #2 TIED TO PLATE): E6 = E62 = 250 VOLTS AND E61 = -25 VOLTS.