PENTODE
MINIATURE TYPE

SHARP-CUTOFF PENTODE
FOR
USE AS AN IF AMPLIFIER
IN TV RECEIVERS
COATED UNIPOTENTIAL CATHODE
ANY MOUNTING POSITION

GLASS BULB
MINIATURE BUTTON
7 PIN BASE E7-1
OUTLINE DRAWING
JEDEC 5-2

THE 4DK6 IS A SHARP-CUTOFF PENTODE IN THE 7 PIN MINIATURE CONSTRUCTION. IT IS DESIGNED FOR SERVICE AS A WIDE-BAND HIGH-FREQUENCY AMPLIFIER AND IS PARTICULARLY SUITABLE FOR USE AS AN IF AMPLIFIER IN TELEVISION RECEIVERS. EXCEPT FOR HEATER CHARACTERISTICS AND RATINGS, THE 4DK6 IS IDENTICAL TO THE 3DK6 AND THE 5DK6.

DIRECT INTERELECTRODE CAPACITANCES
WITHOUT EXTERNAL SHIELD

GRID 1 TO PLATE	MAX.	6.3	1.0
INPUT	pf		
OUTPUT	pf		

HEATER CHARACTERISTICS AND RATINGS
DESIGN MAXIMUM VALUES - SEE EIA STANDARD RS-239

AVG. = AVERAGE CHARACTERISTICS 4.2 VOLTS 450 MA.
HEATER WARM-UP TIME 11 SECONDS
LIMITS OF SUPPLIED CURRENT 450 ± 30 MA.

MAXIMUM Heater Cathode Voltage:
HEATER NEGATIVE WITH RESPECT TO CATHODE
TOTAL DC AND PEAK 200 VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE
DC COMPONENT 100 VOLTS
TOTAL DC AND PEAK 200 VOLTS

CONTINUED ON FOLLOWING PAGE
MAXIMUM RATINGS
DESIGN MAXIMUM VALUES - SEE EIA STANDARD RS-239

PLATE VOLTAGE 300 VOLTS
GRID 2 SUPPLY VOLTAGE 300 VOLTS
GRID 2 VOLTAGE See Rating Chart
PLATE DISSIPATION 2.3 WATTS
GRID 2 DISSIPATION 0.55 WATTS
GRID 1 VOLTAGE - POSITIVE VALUE 0 VOLTS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE VOLTAGE</td>
<td>125 VOLTS</td>
</tr>
<tr>
<td>GRID 3 (SUPPRESSOR)</td>
<td>Connected To Cathode At Socket</td>
</tr>
<tr>
<td>GRID 2 VOLTAGE</td>
<td>125 VOLTS</td>
</tr>
<tr>
<td>CATHODE BIAS RESISTOR</td>
<td>56 OHMS</td>
</tr>
<tr>
<td>PLATE CURRENT</td>
<td>12.0 MA</td>
</tr>
<tr>
<td>GRID 2 CURRENT</td>
<td>3.8 MA</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE</td>
<td>9,800 μMHO</td>
</tr>
<tr>
<td>PLATE RESISTANCE</td>
<td>APPROX. 0.35 MEGOHMS</td>
</tr>
</tbody>
</table>

GRID 1 VOLTAGE FOR Ib = 20 μA
-6.5 VOLTS

\[
E_b = 125 \text{ Volts} \\
E_{C2} = 125 \text{ Volts}
\]
$E_b = 125$ Volts
$E_{c2} = 125$ Volts

$E_{c2} = 125$ Volts