COMPACTRON BEAM PENTODE

FOR TV HORIZONTAL-DEFLECTION AMPLIFIER APPLICATIONS

- **COLOR TV TYPE**
- **LOW KNEE—MINIMUM "SNIVETS"**
- **28 WATTS PLATE DISSIPATION**
- **LOW GRID DRIVE**

The 6LG6 is a compactron beam-power pentode primarily designed for use as the horizontal-deflection amplifier in color television receivers. It is characterized by having a very low knee voltage, high plate-to-screen ratio, and high peak current capability. These efficiency factors make the 6LG6 widely adaptable for use in circuits using shunt or variable-bias type regulation with B+ supply voltages from 240 to over 400 volts. Its low knee minimizes "snivets" without the necessity of supplying special voltages to the beam plates.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential
Heater Characteristics and Ratings
Heater Voltage, AC or DC* . . . 6.3±0.6 Volts
Heater Current† 2.0 Amperes
Direct Interelectrode Capacitances, approximate§
Grid-Number 1 to Plate: (g1 to p). 0.8 pf
Input: g1 to (h + k + g2 + b.p.). 25 pf
Output: p to (h + k + g2 + b.p.). 13 pf

MECHANICAL

Operating Position - Any
Envelope - T-12, Glass
Base - E12-74, Button 12-Pin
Top Cap - C1-1, Small
Outline Drawing - EIA 12-89
Maximum Diameter 1.563 Inches
Minimum Diameter 1.437 Inches
Maximum Over-all Length . . . 4.125 Inches
Minimum Seated Height 3.750 Inches
Minimum Seated Height 3.500 Inches

MAXIMUM RATINGS

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS

TERMINAL CONNECTIONS

- Pin 1 - Heater
- Pin 2 - Internal Connection - Do Not Use
- Pin 3 - Internal Connection - Do Not Use
- Pin 4 - Cathode and Beam Plates
- Pin 5 - Grid Number 1
- Pin 6 - No Connection
- Pin 7 - Internal Connection - Do Not Use
- Pin 8 - No Connection
- Pin 9 - Internal Connection - Do Not Use
- Pin 10 - Cathode and Beam Plates
- Pin 11 - Grid Number 2 (Screen)
- Pin 12 - Heater
- Cap - Plate

BASE DIAGRAM

EIA 12-89

GENERAL ELECTRIC
MAXIMUM RATINGS (Cont’d)

HORIZONTAL-DEFLECTION AMPLIFIER SERVICE*—

DESIGN-MAXIMUM VALUES UNLESS OTHERWISE INDICATED

DC Plate-Supply Voltage (Boost + DC Power Supply) ... 900 Volts
Peak Positive Pulse Plate Voltage (Absolute Maximum Value) ... 7500 Volts
Peak Negative Pulse Plate Voltage ... 100 Volts
Screen Voltage .. 200 Volts
Peak Negative Grid-Number 1 Voltage .. 300 Volts
Plate Dissipation§ ... 28 Watts
Screen Dissipation ... 5.0 Watts
DC Cathode Current ... 315 Milliamperes
Peak Cathode Current .. 1100 Milliamperes
Heater-Cathode Voltage
 Heater Positive with Respect to Cathode
 DC Component ... 100 Volts
 Total DC and Peak ... 200 Volts
 Heater Negative with Respect to Cathode
 Total DC and Peak ... 200 Volts
Grid Number 1 Circuit Resistance
 With Feedback Type High Voltage Regulation .. 1.8 Megohms
 With Shunt-Type High Voltage Regulation (Switching Mode). 2.2 Megohms
Bulb TemperatureΔ ... 225 C

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage .. 6000 50 175 Volts
Screen Voltage .. 125 125 125 Volts
Grid-Number 1 Voltage ... 0 0 0 Volts
Plate Resistance, approximate ... 7500 Ohms
Transconductance ... 11500 Micromhos
Plate Current ... 600 90 180 Milliamperes
Screen Current ... 42 1.7 Milliamperes
Grid-Number 1 Voltage, approximate
 Ib = 1.0 Milliamperes ... -125 --- -45 Volts
Triode Amplification Factor** ... --- --- 3.6

NOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

§ Heater current of a bogey tube at Ef = 6.3 volts.

§ Without external shield.

¶ For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations", Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.

In stages operating with grid-leak bias, an adequate cathode-bias resistor or other suitable means is required to protect the tube in the absence of excitation.

Δ Measured using a thermocouple attached to a 0.1-inch wide phosphor-bronze ring placed at the hottest location on the bulb.

‡ Applied for short interval (two seconds maximum) so as not to damage tube.

** Triode connection (screen tied to plate) with Eb = Ec2 = 125 volts, and Ec1 = -25 volts.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.
AVERAGE TRANSFER CHARACTERISTICS

$E_t = \text{RATED VALUE}$

$E_b = 175 \text{ VOLTS}$

AVERAGE TRANSFER CHARACTERISTICS

$E_t = \text{RATED VALUE}$

$E_b = 175 \text{ VOLTS}$