6JN6
COMPACTRON BEAM PENTODE

DESCRIPTION AND RATING

The 6JN6 is a compactron beam-power pentode primarily designed for use as the horizontal-deflection amplifier in television receivers. A separate connection is provided for the beam plates to minimize "snivets".

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

Heater Characteristics and Ratings

Heater Voltage, AC or DC* . . . 6.3±0.6 Volts
Heater Current† 1.2 Amperes

Direct Inter electrode Capacitances, approximate§

<table>
<thead>
<tr>
<th>Grid-Number 1 to Plate:</th>
<th>0.34 pf</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g1 to p)</td>
<td></td>
</tr>
<tr>
<td>Input: g1 to (h + k + g2 + b.p.)</td>
<td>16 pf</td>
</tr>
<tr>
<td>Output: p to (h + k + g2 + b.p.)</td>
<td>7.0 pf</td>
</tr>
</tbody>
</table>

MECHANICAL

Operating Position - Any
Envelope - T-12, Glass
Base - E12-74, Button 12-Pin
Outline Drawing - EIA 12-56

| Maximum Diameter 1.563 Inches |
| Maximum Over-all Length 2.875 Inches |
| Maximum Seated Height 2.500 Inches |

MAXIMUM RATINGS

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS

TERMİNAL CONNECTIONS

Pin 1 - Heater
Pin 2 - Cathode
Pin 3 - Grid Number 2 (Screen)
Pin 4 - Beam Plates
Pin 5 - No Connection
Pin 6 - No Connection
Pin 7 - Plate
Pin 8 - No Connection
Pin 9 - No Connection
Pin 10 - Beam Plates
Pin 11 - Grid Number 1
Pin 12 - Heater

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

GENERAL ELECTRIC
MAXIMUM RATINGS (Cont'd)

HORIZONTAL-DEFLECTION AMPLIFIER SERVICE—DESIGN-MAXIMUM VALUES

DC Plate-Supply Voltage (Boost + DC Power Supply) 770 Volts
Peak Positive Pulse Plate Voltage 6500 Volts
Peak Negative Pulse Plate Voltage 1500 Volts
Positive DC Beam Plate Voltage 70 Volts
Screen Voltage 220 Volts
Negative DC Grid-Number 1 Voltage 55 Volts
Peak Negative Grid-Number 1 Voltage 330 Volts
Plate Dissipation§ 17.5 Watts
Screen Dissipation 3.5 Watts
DC Cathode Current 175 Milliamperes
Peak Cathode Current 550 Milliamperes

Heater Cathode Voltage

Heater Positive with Respect to Cathode
DC Component 100 Volts
Total DC and Peak 200 Volts

Heater Negative with Respect to Cathode
Total DC and Peak 200 Volts

Grid-Number 1 Circuit Resistance 1.0 Megohms

Bulb Temperature at Hottest Point 220°C

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage 5000 60 250 Volts
Beam Plates, Connected to Cathode at Socket
Screen Voltage 150 150 150 Volts
Grid-Number 1 Voltage 0Δ -22.5 Volts
Plate Resistance, approximate 18000 Ohms
Transconductance 7300 Micromhos
Plate Current 345 65 Milliamperes
Screen Current 27 1.8 Milliamperes

Grid-Number 1 Voltage, approximate
Ib = 1.0 Milliamperes -100 -42 Volts
Triode Amplification Factor** 4.4

NOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogy value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
† Heater current of a bogy tube at Ef = 6.3 volts.
§ Without external shield.
¶ For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations", Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.
In stages operating with grid-leak bias, an adequate cathode-bias resistor or other suitable means is required to protect the tube in the absence of excitation.
Δ Applied for short interval (two seconds maximum) so as not to damage tube.
** Triode connection (screen triode to plate) with Eb = Ec2 = 150 volts and Ecl = -22.5 volts.