Compactron Beam Triode

6JH5

- COLOR TV TYPE
- 35 WATTS PLATE DISSIPATION
- TRANSCONDUCTANCE = 55000 MICROMOHNS
- DIFFUSION BONDED CATHODE
- 300 MILLIAMPERES PEAK PLATE CURRENT

The 6JH5 is a compactron beam triode suited for use as a pulse-type high-voltage regulator in the high-voltage power supply of color television receivers.

Features of the 6JH5 include a diffusion bonded cathode coating which provides a positive bond between the cathode coating and base material, thereby practically eliminating grid-to-cathode shorts caused by cathode flaking. By operating at a relatively low potential (3500 volts), this pulse-type regulator provides much less stress on internal components than shunt regulators operating in the 25000-volt range.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential
Heater Characteristics and Ratings
Heater Voltage, AC or DC*: 6.3 ± 0.6 Volts
Heater Current*: 2.4 Amperes
Direct Inter-electrode Capacitance, approximate:
- Grid to Plate: 1.7 pf
- Input: g to (h + k + b.p.): 23 pf
- Output: p to (h + k + b.p.): 12 pf

MECHANICAL

Operating Position - Any
Envelope - T-12, Glass
Base - E12-74, Button 12-Pin
Outline Drawing
- Maximum Diameter: 1.563 inches
- Minimum Diameter: 1.437 inches
- Maximum Over-all Length: 4.250 inches
- Maximum Seated Height: 3.875 inches
- Minimum Seated Height: 3.625 inches

MAXIMUM RATINGS

HIGH-VOLTAGE REGULATOR SERVICE*—DESIGN-MAXIMUM VALUES

Peak Plate Voltage: 5500 Volts
Peak Plate Current: 325 Milliamperes
Heater-Cathode Voltage
- Heater Positive with respect to Cathode
 - DC Component: 100 Volts
 - Total DC and Peak: 200 Volts
- Heater Negative with respect to Cathode
 - Total DC and Peak: 450 Volts
Grid-Circuit Resistance*: 0.1 Megohms
Bulb Temperature at Hottest Point†: 240 °C

PHYSICAL DIMENSIONS

TERMINAL CONNECTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heater</td>
</tr>
<tr>
<td>2</td>
<td>Grid</td>
</tr>
<tr>
<td>3</td>
<td>Beam Plate</td>
</tr>
<tr>
<td>4</td>
<td>Cathode</td>
</tr>
<tr>
<td>5</td>
<td>Internal Connection - Do Not Use</td>
</tr>
<tr>
<td>6</td>
<td>Internal Connection - Do Not Use</td>
</tr>
<tr>
<td>7</td>
<td>Plate</td>
</tr>
<tr>
<td>8</td>
<td>Plate</td>
</tr>
<tr>
<td>9</td>
<td>Internal Connection - Do Not Use</td>
</tr>
<tr>
<td>10</td>
<td>Beam Plate</td>
</tr>
<tr>
<td>11</td>
<td>Grid</td>
</tr>
<tr>
<td>12</td>
<td>Heater</td>
</tr>
</tbody>
</table>

BASE DIAGRAM

EIA 12JE
MAXIMUM RATINGS (Cont'd)

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogy electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogy tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Plate Voltage</td>
<td>3500 Volts</td>
</tr>
<tr>
<td>Beam Plate Connected to Cathode at Socket</td>
<td></td>
</tr>
<tr>
<td>Negative DC Grid Voltage</td>
<td>4.4 Volts</td>
</tr>
<tr>
<td>Peak Plate Current</td>
<td>300 Milliamperes</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>300</td>
</tr>
<tr>
<td>Transconductance</td>
<td>55000 Micromhos</td>
</tr>
<tr>
<td>Plate Resistance, approximate</td>
<td>4600 Ohms</td>
</tr>
<tr>
<td>Grid Voltage, approximate</td>
<td>-16 Volts</td>
</tr>
</tbody>
</table>

Eb = 3500 Volts, Ib = 1.0 Milliamperes

NOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogy value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

* Heater current of a bogy tube at Ef = 6.3 volts.

Without external shield.

For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations", Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.

Sufficient impedance (220 ohms by-passed with a 0.01 microfarad capacitor is suggested) should be in series with the cathode to limit the cathode current under prolonged heater-cathode short-circuit conditions. This protective impedance will minimize the danger of heater burnout in case of a momentary heater-cathode arc within the tube.

Larger values of grid-circuit resistance may be used if provisions are made to protect the tube.

Duty cycle of the pulse must be less than 2.5 percent.

Measured with an infrared thermometer, Ircon Model 700 BC or equivalent, at an ambient temperature of 40 °C.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

TUBE PRODUCTS DEPARTMENT
Owensboro, Kentucky 42301

GENERAL ELECTRIC