The 6SK7 and 12SK7 are remote-cutoff pentodes which are identical except for heater ratings. Each type is designed for use as a high-gain radio-frequency or intermediate-frequency amplifier in radio receivers. Because of its remote-cutoff characteristic, this type will handle large signal voltages without cross-modulation or modulation-distortion and is suitable for use in receivers which employ automatic-volume-control.

GENERAL

Cathode - Coated Unipotential

Heater Voltage, A-C or D-C 6.3 ... 12.6 Volts
Heater Current ... 0.3 ... 0.15 Ampere

Envelope - MT-9, Metal Shell
Base - BB-21, Small Wafer Octal B-Pin
Mounting Position - Any

Direct Interelectrode Capacitances *
 Grid-Number 1 to Plate, maximum 0.003 μf
 Input .. 6.0 μf
 Output .. 7.0 μf

MAXIMUM RATINGS

Plate Voltage .. 300 Volts
Screen-Supply Voltage 300 Volts
Screen Voltage - See Screen Rating Chart
Positive D-C Grid-Number 1 Voltage 0 Volts
Plate Dissipation .. 4.0 Watts
Screen Dissipation ... 0.4 Watt
Heater-Cathode Voltage
 Heater Positive with Respect to Cathode 90 Volts
 Heater Negative with Respect to Cathode 90 Volts

CHARACTERISTICS AND TYPICAL OPERATION

CLASS A1 AMPLIFIER

Plate Voltage ... 100 250 Volts
Suppressor Voltage * 0 0 Volts
Screen Voltage ... 100 100 Volts
Grid-Number 1 Voltage -1 -3 Volts
Plate Resistance, approximate 0.12 0.8 Megaohm
Transconductance 2350 2000 Millimhos
Plate Current ... 13 9.2 Milliamperes
Screen Current .. 4.0 2.6 Milliamperes
Grid-Number 1 Voltage, approximate,
 $G_m = 10 \text{ Micromhos} -35 -35 \text{ Volts}$

* With pin 1 connected to pin 5.

* Pin 3 connected to pin 5 at socket.
AVERAGE TRANSFER CHARACTERISTICS

$E_f = 6.3 \text{ VOLTS (6SK7)}$
$E_f = 12.6 \text{ VOLTS (12SK7)}$
$E_b = 250 \text{ VOLTS}$
$E_{c3} = 0 \text{ VOLTS}$

GRID NUMBER 1 VOLTAGE IN VOLTS

PLATE CURRENT IN MILLIAMPERES

AVERAGE TRANSFER CHARACTERISTICS

$E_f = 6.3 \text{ VOLTS (6SK7)}$
$E_f = 12.6 \text{ VOLTS (12SK7)}$
$E_b = 250 \text{ VOLTS}$
$E_{c3} = 0 \text{ VOLTS}$

GRID NUMBER 1 VOLTAGE IN VOLTS

SCREEN CURRENT IN MILLIAMPERES
AVERAGE PLATE CHARACTERISTICS

- $E_F = 6.3$ VOLTS (6SK7)
- $E_F = 12.6$ VOLTS (12SK7)
- $E_C3 = 0$ VOLTS
- $E_C2 = 100$ VOLTS

SCREEN RATING CHART

Area of permissible operation is highlighted.
AVERAGE TRANSFER CHARACTERISTICS

$E_f = 6.3$ VOLTS (6SK7)

$E_f = 12.6$ VOLTS (12SK7)

$E_b = 250$ VOLTS

$E_{c3} = 0$ VOLTS

GRID NUMBER 1 VOLTAGE IN VOLTS

TRANSCONDUCTANCE IN MICROMOS