Eitel-McCullough, Inc.
San Bruno, California

General Characteristics

Electrical
Filament: Thoriated tungsten
Voltage
Current
Amplification Factor (Average) 39
Direct Inter-electrode Capacitances (Average)
Grid-Plate
Grid-Filament
Plate-Filament
Transconductance (Ig=100 ma, Eo=2000, e_r=-30)
Frequency for Maximum Ratings

Mechanical
Base
Basing
Maximum Overall Dimensions:
Length
Diameter
Net weight
Shipping weight (Average)

Audio Frequency Power Amplifier and Modulator
Class B
Typical Operation—2 Tubes
Max. Rating

D-C Plate Voltage
Max.-Signal D-C Plate Current, per tube
Plate Dissipation, per tube
D-C Grid Voltage (approx.)
Peak A-F Grid Input Voltage
Zero-Signal D-C Plate Current
Max.-Signal D-C Plate Current
Max.-Signal Driving Power (approx.)
Effective Load, Plate-to-Plate
Max.-Signal Plate Power Output

*Averaged over any sinusoidal audio frequency cycle.

Radio Frequency Power Amplifier and Oscillator
Class-C *Telegraphy
(Plug-in conditions without modulation)

Typical Operation—1 Tube
Max. Rating

D-C Plate Voltage
D-C Plate Current
D-C Grid Current
D-C Grid Voltage
Plate Power Output
Plate Input
Plate Dissipation
Peak R. F. Grid Input Voltage (approx.)
Driving Power (approx.)

*The above figures show actual measured tube performance, and do not allow for variations in circuit losses.

(Effective 5-1-46) Copyright, 1946 by Eitel-McCullough, Inc.
DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1000, 1500 and 2000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by \(P_p \).

Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 1000, 1500, and 2000 volts respectively.