INSTRUMENT CATHODE RAY TUBE

BRIEF DATA
Display 7 x 5 cm
A short 10 cm diagonal (4 in) flat faced rectangular instrument tube with aluminised screen, mesh p.d.a. and deflection blanking. This tube is intended for use in general purpose and portable oscilloscopes.

HEATER
Heater voltage 11 V
Heater current 68 mA

SCREEN
Fluorescence Green
Phosphorescence Green
Persistence 1–5 ms
E.I.A. phosphor code P31
Pro Electron phosphor code GH
GEC phosphor code 74

Other screens are available to special order (see data sheet 'CRT Screens').

RATINGS (Absolute)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max</th>
<th>Min</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth anode voltage</td>
<td>V_{a4}</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Third anode voltage</td>
<td>V_{a3}</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Ratio</td>
<td>V_{a4}/V_{a3}</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Focus voltage</td>
<td>V_{a2}</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>First anode voltage</td>
<td>V_{a1}</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Control grid voltage</td>
<td>$-V_{g1}$</td>
<td>200</td>
<td>1.0</td>
</tr>
<tr>
<td>Blanking plate to first anode voltage</td>
<td>V_{g2-a1}</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Y plate to third anode voltage</td>
<td>V_{ya3}</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>X plate to third anode voltage</td>
<td>V_{xa3}</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Grid to cathode circuit resistance</td>
<td>R_{g1-k}</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Y deflector plate circuit resistance</td>
<td>R_{ya3}</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>X deflector plate circuit resistance</td>
<td>R_{xa3}</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Voltage ratings are to cathode unless otherwise shown.

A member of the GEC Group of Companies
© 1975 The M-O Valve Co. Ltd.

June 1975
Issue 2
CAPACITANCES (Typical)

Control grid to all other electrodes ... 9.3 pF
Blanking plate to all other electrodes ... 8.5 pF
Deflector plates y1 to y2 .. 0.9 pF
Deflector plates y1 to all electrodes except y2 5.0 pF
Deflector plates y2 to all electrodes except y1 5.0 pF
Deflector plates x1 to x2 ... 2.5 pF
Deflector plates x1 to all electrodes except x2 7.0 pF
Deflector plates x2 to all electrodes except x1 7.0 pF

EQUIPMENT DESIGN RANGE

Focus voltage ... V_{a2} 400 Max 233 Min V/kV$_{a3}$
Control grid voltage for spot cut-off .. $-V_{g1}$ 109 Max 42 Min V/kV$_{a1}$
Blanking voltage ... V_{g2-a1} +83 Max -83 Min V/kV$_{a3}$
Y deflection factor .. Dy 16 Max 10.8 Min V/cm/kV$_{a3}$
X deflection factor .. Dx 23 Max 18.3 Min V/cm/kV$_{a3}$
Astigmatism correction voltage .. $V_{a3-y \text{ mean}}$ +83 Max -83 Min V/kV$_{a3}$
Pattern correction voltage .. $V_{s-x \text{ mean}}$ +83 Max -83 Min V/kV$_{a3}$

TYPICAL OPERATION (All operating potentials are with respect to cathode)

Fourth anode voltage ... V_{a4} 6.0 Max kV
Third anode voltage ... V_{a3} 600 Max V
Focus voltage ... V_{a2} 140–240 Max V
First anode voltage ... V_{a1} 600 Max V
Control grid voltage for spot cut-off .. $-V_{g1}$ 65–25 Max V
Nominal blanking plate voltage .. V_{g2} 600 Max V
Nominal geometry correction voltage .. V_s 600 Max V
Maximum y deflection factor .. Dy 9.6 Max V/cm
Maximum x deflection factor .. Dx 13.8 Max V/cm
Line width (typical) 74 screen .. 0.35 Max mm

Measured by means of a shrinking raster at $I_b = 5\mu A$

DISPLAY CHARACTERISTICS (Typical Operation)

Pattern Distortion

With pattern correction applied to s, the edges of a test raster will lie between two concentric rectangles of 70mm x 50mm and 68mm x 48mm. The angle between x and y axes will be $90^\circ \pm 1^\circ$ measured at face centre.
X Deflection Linearity
The deflection factor measured over any 10mm of deflection in the appropriate axis will not vary by more than ±3½% within the minimum scanned area.

Spot Position
The focused and undeflected spot will fall within a square 10mm x 10mm centred at the geometric centre of the faceplate.

Orientation
Looking at the screen with pins 1 and 12 uppermost, a positive voltage applied to x1 will deflect the beam to the left and a positive voltage applied to y1 will deflect the beam upwards.

Minimum Scanned Area

| x major axis | 7.0 cm |
| y minor axis | 5.0 cm |

This area will be centred on a point which is within 3mm of the major and minor axes of the tube face.

Axis Alignment
The electrical x axis of the tube will lie within ±5° of the major axis of the faceplate, and may be aligned with this axis by means of the field from an axial coil placed about the cone of the tube in the region shown in the outline drawing. The maximum ampere turns required for axis alignment will be given by \(11\sqrt{kV_a4}\).

Beam Blanking (If g2 blanking not used join pins 5 & 10 externally)
Under typical operating conditions (i.e. \(V_{a1} = V_{a3} = 600\)V) and for a beam current \(I_b\) of 5μA a potential of 50V (preferably negative) with respect to a1, applied to the blanking electrode g2, will completely cut off the beam. This electrode should not be used as a brightness control.

MOUNTING
The tube may be mounted in any position but should not be supported by the base alone. It should preferably be held in a suitable rubber mask at the screen and by a clamp around the magnetic shield near the base. The socket should have sufficient freedom of movement to accommodate the maximum overall tube length and base orientation tolerances.

WEIGHT
The weight of the tube alone is 480gm (approx.).
BASE CONNECTIONS

Base: B12F
Pin 1: g1
 2: k + h
 3: h
 4: a2 (focus)
 5: g2 (blanking)
 6: x1
Pin 7: x2
 8: s (geometry)/IPS/Mesh
 9: y2
 10: a1
 11: y1
 12: a3 (astigmatism)

Side contact (CT8): a4

ACCESSORIES

Base sockets
Pressac Ltd.,
Leopold Street,
Long Eaton,
Nottingham NG10 4QL.

CT8 connector
Pressac Ltd. (cover) 12/426 (clip) 10/425

Magnetic shield
Magnetic Shields Ltd.,
Headcorn Road,
Staplehurst,
Tonbridge, Kent.

WARNING

Care should be taken not to expose the tube to strong magnetic fields either in use or during storage.

Whilst M-OV has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. M-OV accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.
OUTLINE

If g^2 blanking not used
join pins 5 and 10 externally

Recommended position for trace rotation coil

Dimensions in mm.

The M-O Valve Company Limited
Brook Green Works, London W6 7PE