RADIOTRON
6J7-G
TRIPLE-GRID DETECTOR AMPLIFIER

Heater - Coated Unipotential Cathode
Voltage 6.5 0-6 or 6-6 volts
Current 0.3 amp.

Direct Interelectrode Capacitances:

Pentode Connection Triode Connection
Grid to Plate 0.007 max. 1.6 pF
Input 4.6 Grid to Cathode 8.6 pF
Output 12.0 Plate to Cathode 17.0 pF

Maximum Overall Length 4-15/32"
Maximum Seated Height 5-59/64"
Maximum Diameter 1-9/16"

Bulb 67-12
Cap Skirted Miniature
Base Small Shell Octal 7-Pin
Pin 1 - Internal shield Pin 5 - Suppressor
Pin 2 - Heater Pin 7 - Heater
Pin 3 - Plate Pin 8 - Cathode
Pin 4 - Screen Cap - Grid
Mounting Position Any

BOTTOM VIEW (G-72)

Maximum Ratings are Design-Centre Values:

P-F AMPLIFIER - CLASS A1.

- Plate Voltage 300 max. volts
- Screen Voltage 250 max. volts
- Screen Supply Voltage 500 max. volts
- Grid Voltage 0 min. volts
- Plate Dissipation 1.6 max. watts
- Screen Dissipation 0.35 max. watt

Typical Operation:

- Plate Voltage 100 250 volts
- Screen Voltage 100 100 volts
- Grid Voltage -6 -6 volts
- Suppressor Connected to cathode at socket
- Plate Resistance 1.0 + megohm
- Grid Conductance 1128 1828 mhos
- Grid Bias (approx.) 0 0 volts
- Plate Current 2.0 2.0 ma.
- Screen Current 0.8 0.5 ma.

PENTODE POWER AMPLIFIER

- Plate Voltage 500 max. volts
- Screen Voltage 250 max. volts
- Screen Supply Voltage 500 max. volts
- Grid Voltage 0 min. volts
- Plate Dissipation 3.6 max. watts
- Screen Dissipation .55 max. watt

Typical Operation:

- Plate Voltage 250 250 volts
- Screen Voltage 100 197 volts
- Grid Voltage -9.5 -4 volts
- Suppressor Connected to cathode at socket
- Plate Bias Resist. 800 440 ohms
- Peak P-F Grid Volts 2.5 4 volts
- Zero-Sig. Plate Current 2.0 7.5 ma.
- Max.-Sig. Plate Current 8.3 4 ma.
- Zero-Sig. Screen Current 0.7 1.6 ma.
- Max.-Sig. Screen Current 0.9 4 ma.
- Plate Resistance - 0 ohms
- Conductance 1270 (approx.) 3 mhos
- Load Resistance 56000 28000 ohms
- Max.-Signal Power Output 0.58 0.69 watt

* With close fitting shield connected to cathode.
* Screen and suppressor connected to plate at the socket; without shield—can.

For other footnotes see back of sheet.

AMALGAMATED WIRELESS VALVE CO. PTY. LTD.
MAY, 1945
SYDNEY, AUSTRALIA
TRIPLE-GRID DETECTOR AMPLIFIER

TRIODE POWER AMPLIFIER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>250 max. volts</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>0 min. volts</td>
</tr>
<tr>
<td>Plate & Screen Dissipation (total)</td>
<td>1.75 max. watts</td>
</tr>
</tbody>
</table>

Typical Operation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>180 volts</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-5.0 volts</td>
</tr>
<tr>
<td>Cathode Bias Resistor</td>
<td>1000 ohms</td>
</tr>
<tr>
<td>Zero-Signal Plate Current</td>
<td>0.2 mA</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>80</td>
</tr>
<tr>
<td>Plate Resistance</td>
<td>10000 ohms</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1900 µhos</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>22000 ohms</td>
</tr>
<tr>
<td>Second Harmonic Distortion</td>
<td>5%</td>
</tr>
<tr>
<td>Power Output</td>
<td>0.375 watt</td>
</tr>
</tbody>
</table>

DETECTOR

Typical Operating Conditions as Biased Detector:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Supply Voltage</td>
<td>100 volts</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>100 volts</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-1.4 volts</td>
</tr>
<tr>
<td>Cathode Bias Resistor</td>
<td>10000 ohms</td>
</tr>
<tr>
<td>Suppressor</td>
<td>Connected to Cathode at socket</td>
</tr>
<tr>
<td>Zero-Sig.Cathode Cur.</td>
<td>0.055 mA</td>
</tr>
<tr>
<td>Plate Load Resistor</td>
<td>0.055 µhos</td>
</tr>
<tr>
<td>Coupling Condenser</td>
<td>0.03 µF</td>
</tr>
<tr>
<td>Grid Resistor oo</td>
<td>0.03 µmhos</td>
</tr>
<tr>
<td>R-F Signal (MHz)</td>
<td>1.08 MHz</td>
</tr>
<tr>
<td></td>
<td>1.00 MHz</td>
</tr>
</tbody>
</table>

In circuits where the cathode is not directly connected to the heater, the potential difference between heater and cathode should be kept as low as possible.

◆ The grid circuit resistance should not exceed 1 megohm as a pentode or triode power amplifier or 3 megohms as a conventional r-f or i-f amplifier. Where the circuit constants are such that the plate current cannot exceed 1 mA, the grid circuit resistance may be as high as 10 megohms; for higher values of grid circuit resistance it is essential to operate with reduced heater voltage.

† Greater than 1 megohm.

△ For cathode current cut-off.

The voltage at the plate will be the "Plate Supply Voltage" minus the voltage drop across the plate load resistor caused by the plate current.

For the following valve.

For these signal values modulated 20%, the voltage output under each set of conditions is 17 peak volts at the grid of the following amplifier. This value is sufficient to ensure full audio output from a type 6F5-G (Class A pentode service) with 250 volts on the plate.

* Screen and suppressor connected to plate.

** The requisite negative bias may be obtained from an external source or, alternatively, may be derived from a cathode bias resistor of the stated value. For this particular service type of bias has negligible effect on the operation.

For recommended operating conditions as a resistance-coupled a-f voltage amplifier refer to sheet headed "Resistance-Coupled Pentodes."

← Indicates a change.
RADIOTRON
6J7-G

AVERAGE PLATE CHARACTERISTICS

$E_f = 6.3$ VOLTS SCREEN VOLTS = 100 SUPPRESSOR VOLTS = 0

PLATE MILLIAMPERES 92C-4741R1

AMALGAMATED WIRELESS VALVE Co. Pty. Ltd.
MAY. 1945
SYDNEY, AUSTRALIA
PLATE CURRENT MILLIAMPERES

GRID \[E_{G1} \text{ VOLTS} \]

PLATE \[E_{P} \text{ VOLTS} = 6.3 \]

PLATE LOAD \[20 \text{ MΩ} \]

\[V_{CC} = 5 \text{ V} \]

A.W.V. 174
$E_f = 6.3\ \text{VOLTS}$
SCREEN AND SUPPRESSOR TIED TO PLATE
E_f = 6.3 VOLTS
SCREEN AND SUPPRESSOR TIED TO PLATE.