RCA-813 is a general-purpose transmitting beam power tube of the thoriated-tungsten filament type designed for use as an rf power amplifier and oscillator as well as an af power amplifier and modulator. The 813 has a maximum plate dissipation of 125 watts under ICAS conditions in modulator service and cw service. In the latter service it can be operated with full input to 30 Mc and with reduced input to 120 Mc.

Because of its high power sensitivity, the 813 requires very little driving power to give full power output. For example, in class C telegraph service under ICAS conditions, a single 813 is capable of giving a power output of approximately 375 watts with a driving power of only about 4 watts.

DATA

Electrical:

Filament, Thoriated Tungsten:
- Voltage (AC or DC) ... 10.0 ± 0.5 volts
- Current at 10.0 volts ... 5.0 amp
- Transconductance (Approx.) for plate voltages: 2000, grid=No.2: 4000, and plate current = 50 ma ... 3750 µhos
- Mu-Factor, grid No.2 to grid No.1: For plate voltages: 2000, grid=No.2: 8.5
- Direct interelectrode capacitances:
 - Grid No.1 to plate ... 0.25 max. µf
 - Grid No.1 to filament, grid No.2, and grid No.3 ... 16.3 µf
 - Plate to filament, grid No.2, and grid No.3 ... 14 µf

Mechanical:
- Mounting Position ... Vertical, Base up or down; Horizontal, with pins 2 & 6 in vertical plane
- Maximum Overall Length ... 7-1/2"
- Seated Length ... 6-5/8" ± 1/16"
- Maximum Diameter ... 2-9/16"
- Bulb ... T-20
- Cap ... Medium (JETEC No. C1-S)

Base ... Medium-Metal-Shell Giant 7-Pin with Bayonet (JETEC No. AT-17)
Weight (Approx.) ... 8 oz.

AF POWER AMPLIFIER & MODULATOR - Class AB1

Maximum Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>DC PLATE VOLTAGE</th>
<th>2250 max.</th>
<th>2500 max. volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>1100 max.</td>
<td>1100 max. volts</td>
</tr>
<tr>
<td>MAX.-SIGNAL DC PLATE CURRENT</td>
<td>125 max.</td>
<td>125 max. ma</td>
</tr>
<tr>
<td>MAX.-SIGNAL PLATE INPUT</td>
<td>360 max.</td>
<td>150 max. watts</td>
</tr>
<tr>
<td>MAX.-SIGNAL GRID-No.2 INPUT</td>
<td>22 max.</td>
<td>22 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>100 max.</td>
<td>125 max. watts</td>
</tr>
</tbody>
</table>

Typical Operation:

<table>
<thead>
<tr>
<th>Values are for 2 tubes</th>
<th>DC Plate voltage</th>
<th>1500</th>
<th>2000</th>
<th>2250</th>
<th>2500 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Grid-No.3 (Suppressor) voltage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 volts</td>
<td></td>
</tr>
<tr>
<td>DC Grid-No.2 Voltage</td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750 volts</td>
<td></td>
</tr>
<tr>
<td>DC Grid-No.1 (Control-Grid) Voltage</td>
<td>160</td>
<td>160</td>
<td>170</td>
<td>180 volts</td>
<td></td>
</tr>
<tr>
<td>Zero-Signal DC Plate Current</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50 ma</td>
<td></td>
</tr>
<tr>
<td>Max.-SIGNAL DC Plate Current</td>
<td>305</td>
<td>265</td>
<td>255</td>
<td>290 ma</td>
<td></td>
</tr>
<tr>
<td>Zero-Signal DC Grid-No.2 Current</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2 ma</td>
<td></td>
</tr>
<tr>
<td>Max.-SIGNAL DC Grid-No.2 Current</td>
<td>45</td>
<td>43</td>
<td>53</td>
<td>54 ma</td>
<td></td>
</tr>
<tr>
<td>Effective Load Resistance (Plate to plate)</td>
<td>9300</td>
<td>16000</td>
<td>20000</td>
<td>19000 ohms</td>
<td></td>
</tr>
<tr>
<td>Max.-SIGNAL Driving Power (Approx.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 watts</td>
<td></td>
</tr>
<tr>
<td>Max.-SIGNAL Power Output (Approx.)</td>
<td>260</td>
<td>335</td>
<td>380</td>
<td>490 watts</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Circuit Values (CCS or ICAS):

Grid-No.1-Circuit Resistance:
- With fixed bias | 3000 max. ohms |
- With cathode bias | Not recommended |

RF POWER AMPLIFIER - Class B Telephony

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>DC PLATE VOLTAGE</th>
<th>2000 max.</th>
<th>2250 max. volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>400 max.</td>
<td>400 max. volts</td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>100 max.</td>
<td>125 max. ma</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>150 max.</td>
<td>200 max. watts</td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>15 max.</td>
<td>20 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>100 max.</td>
<td>125 max. watts</td>
</tr>
</tbody>
</table>

Typical Operation:

<table>
<thead>
<tr>
<th>DC Plate voltage</th>
<th>1500</th>
<th>2000</th>
<th>2250</th>
<th>2500 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Grid-No.3 (Suppressor) voltage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 volts</td>
</tr>
<tr>
<td>DC Grid-No.2 Voltage</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400 volts</td>
</tr>
</tbody>
</table>
GRID-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with a max. modulation factor of 1.0

Maximum Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>DC PLATE VOLTAGE</th>
<th>2000 max.</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>400 max.</td>
<td></td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) VOLTAGE</td>
<td>300 max.</td>
<td></td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>100 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>150 max.</td>
<td></td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>15 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>100 max.</td>
<td></td>
</tr>
</tbody>
</table>

Typical Operation:

DC PLATE Voltage: 1500 2000 2250 volts
DC GRID-No.2 (Suppressor) Voltage: 0 0 0 volts
DC GRID-No.1 Voltage: 400 400 400 volts
Peak RF GRID-No.1 Voltage: 145 120 135 volts
Peak A.F. GRID-No.1 Voltage: 60 60 55 volts
DC PLATE CURRENT: 70 75 85 ma
DC GRID-No.2 Current: 3 3 2.5 ma
Driving Power: 40 50 75 watts
Power Output (Approx.): 40 50 75 watts

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with a max. modulation factor of 1.0

Maximum Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>DC PLATE VOLTAGE</th>
<th>1600 max.</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>400 max.</td>
<td></td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) VOLTAGE</td>
<td>300 max.</td>
<td></td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>150 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>240 max.</td>
<td></td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>15 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>67 max.</td>
<td></td>
</tr>
</tbody>
</table>

Typical Operation:

DC PLATE Voltage: 1250 1600 2000 volts
DC GRID-No.3 (Suppressor) Voltage: 0 0 0 volts
DC GRID-No.2 Voltage: 300 300 350 volts
From a series resistor of: 27000 43000 41000 ohms
DC GRID-No.1 Voltage: -150 -160 -170 volts
From a grid resistor of: 12500 13500 11000 ohms
Peak RF GRID-No.1 Voltage: 250 250 300 volts
DC PLATE Current: 150 150 200 ma
DC GRID-No.2 Current: 35 30 40 ma
DC GRID-No.1 Current (Approx.), 13 12 16 ma

Driving Power (Approx.) 2.9 2.7 4.3 watts
Power Output (Approx.) 140 180 300 watts

Maximum Circuit Values (CCS or ICAS):

Grid-No.1-Circuit Resistance 30000 max. ohms

RF POWER AMPLIFIER & OSCILLATOR - Class C Telephony

Key-down conditions per tube without amplitude modulation

Maximum Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>DC PLATE VOLTAGE</th>
<th>2000 max.</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>400 max.</td>
<td></td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) VOLTAGE</td>
<td>300 max.</td>
<td></td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>180 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>25 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>10 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>100 max.</td>
<td>ICAS</td>
</tr>
</tbody>
</table>

Typical Operation:

DC PLATE Voltage: 1500 2000 2250 volts
DC GRID-No.2 (Suppressor) Voltage: 0 0 0 volts
DC GRID-No.2 Voltage: 300 300 400 volts
From a series resistor of: 27000 40000 36000 ohms
DC GRID-No.1 Voltage: -75 -90 -120 volts
From a grid resistor of: 6000 7500 12000 10000 ohms

Maximum Circuit Values (CCS or ICAS):

Grid-No.1-Circuit Resistance 30000 max. ohms

SELF-RECTIFYING OSCILLATOR or AMPLIFIER - Class C

Maximum CCS Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>AC PLATE VOLTAGE (RMS)</th>
<th>2800 max.</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC GRID-No.2 (SCREEN) VOLTAGE (RMS)</td>
<td>550 max.</td>
<td></td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) VOLTAGE</td>
<td>-100 max.</td>
<td></td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>95 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>DC GRID-No.1 CURRENT</td>
<td>10 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>295 max.</td>
<td>ICAS</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>100 max.</td>
<td>ICAS</td>
</tr>
</tbody>
</table>

Typical Operation:

AC PLATE Voltage (RMS): 2800 volts
AC GRID-No.2 (Suppressor) Voltage: 0 volts
AC GRID-No.2 Voltage: 530 volts
DC GRID-No.1 Voltage: -37 volts
From a grid resistor of: 37000 ohms
DC PLATE Current: 95 ma
DC GRID-No.1 Current: 12 ma
Driving Power (Approx.), 1 watt
Output-Circuit Efficiency (Approx.), 75 per cent
Useful Power Output (Approx.), 170 watts

Maximum Circuit Values:

Grid-No.1-Circuit Resistance 30000 max. ohms

AMPLIFIER or OSCILLATOR - Class C

With Separate, Rectified, Unfiltered, Single-Phase, Full-Wave Plate and GRID-No.2 Supply

Maximum CCS Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>AC PLATE VOLTAGE</th>
<th>1800 max.</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC GRID-No.2 (SCREEN) VOLTAGE</td>
<td>360 max.</td>
<td></td>
</tr>
</tbody>
</table>
DC GRID-No.1 (CONTROL-GRID) VOLTAGE ... -200 max. volts
DC PLATE CURRENT 190 max. ma
DC GRID-No.1 CURRENT 22 max. ma
PLATE INPUT 360 max. watts
GRID-No.2 INPUT 22 max. watts
PLATE DISSIPATION 100 max. watts

Typical Operation:

- **DC Plate voltage** 1800 volts
- **DC Grid-No.3 (Suppressor) voltage** 0 volts
- **DC Grid-No.2 Voltage** 250 volts
- **DC Grid-No.1 Voltage** -120 volts
- From a grid resistor of 10000 ohms
- **DC Plate Current** 160 ma
- **DC Grid-No.2 Current** 37 ma
- **DC Grid-No.1 Current (Approx.)** 12 ma
- **Driving Power (Approx.)** 2 watts
- **Output-Circuit Efficiency (Approx.)** 75 per cent
- **Useful Power Output (Approx.)** 210 volts watts

Maximum Circuit Values:

- Grid-No.1 Circuit Resistance 30000 max. ohms

MAXIMUM RATINGS vs OPERATING FREQUENCY

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>120</th>
<th>Mc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX. PERMISSIBLE PERCENTAGE OF</td>
<td>MAX. RATED PLATE VOLTAGE AND</td>
<td>PLATE INPUT:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class B Television</td>
<td>100</td>
<td>93</td>
<td>88</td>
<td>76</td>
<td>$</td>
</tr>
<tr>
<td>Class C Television:</td>
<td>100</td>
<td>93</td>
<td>88</td>
<td>76</td>
<td>$</td>
</tr>
<tr>
<td>Grid Modulated</td>
<td>100</td>
<td>93</td>
<td>88</td>
<td>76</td>
<td>$</td>
</tr>
<tr>
<td>Plate Modulated</td>
<td>100</td>
<td>87</td>
<td>75</td>
<td>50</td>
<td>$</td>
</tr>
<tr>
<td>Class C Telegraphy</td>
<td>100</td>
<td>87</td>
<td>75</td>
<td>50</td>
<td>$</td>
</tr>
<tr>
<td>Class C Self-Rectifying Oscillator, Amplifier</td>
<td>100</td>
<td>87</td>
<td>75</td>
<td>50</td>
<td>$</td>
</tr>
<tr>
<td>Class C Separately Rectified Oscillator, Amplifier</td>
<td>100</td>
<td>87</td>
<td>75</td>
<td>50</td>
<td>$</td>
</tr>
</tbody>
</table>

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

- **Filament Current** 1 4.7 5.3 amp
- **Direct Inter-electrode Capacitances:**
 - **Grid No.1 to plate** 2 0.25 μF
 - **Grid No.1 to filament, grid No.2, and grid No.3** 2 13 19.6 μF
 - **Plate to filament, grid No.2, and grid No.3** 2 10.5 17.5 μF
 - **Plate Current[1]** 1.3 35 65 ma
 - **Plate Current[2]** 1.4 2 ma
 - **Grid-No.2 Current** 1.3 4 ma
 - **Useful Power Output** 1.5 198 watts

Note:
- With an external shield and with base shell floating.
- With dc plate voltage of 2000 volts, grid No.3 connected to negative filament terminal, dc grid-no.2 voltage of 400 volts, and dc grid-no.1 voltage of -35 volts.
- With dc plate voltage of 2000 volts, grid No.3 connected to negative filament terminal, dc grid-no.2 voltage of 400 volts, and dc grid-no.1 voltage of -80 volts.
- In a self-excited oscillator with dc plate voltage of 2000 volts, grid No.3 connected to negative filament terminal, dc grid-no.2 voltage of 400 volts, dc grid-no.1 current of 0.6 to 14.4 ma, grid-no.1 resistor of 10000 ohms, dc plate current of 180 ma, and frequency of 15 Mc.
- With no external shield and with base shell floating.
- Subscript 1 indicates that grid-no.1 current does not flow during any part of the input cycle.

- Continuous Commercial Service.
- Intermittent Commercial and Amateur Service.
- Averaged over any audio-frequency cycle of sine-wave form.
- **Grid No.3 should be connected to mid-plate on filament transformer secondary winding or to negative end of filament operated on dc.**
- Preferably obtained from a separate source or from the plate-voltage supply with a voltage divider.
- For ac filament supply.
- The driver stage should be capable of supplying the No.1 grids of the class AB1 stage with the specified driving voltage at low distortion.
- The type of input coupling network used should not introduce too much resistance in the grid-no.1 circuit. Transformer or impedance coupling devices are recommended, when the S13 is operated in class AB1 service, only fixed bias should be used.
- Fixed supply or bypassed cathode-resistor bias is recommended.
- Usually negligible.
- Never more than 2 watts.
- At crest of audio-frequency cycle with a modulation factor of 1.0.
- Value shown for each operating condition is power required by grid No.1 and biasing device when the S13 is operated at frequency sufficiently low to avoid high-frequency losses. At moderate frequencies, the driver stage should be capable of providing about twice the specified value at high frequencies, the driver stage may have to supply 3 to 10 times the value shown.
- Obtained from fixed supply, or cathode resistor un-bypassed for audio frequencies.
- RF driving power is never more than 2 watts. AF power can generally not more than 1 watt.
- Obtained from a separate source modulated along with the plate supply, or from the modulated plate supply through a series resistor of the value shown for each operating condition.
- Obtained from a grid-no.1 resistor, from cathode resistor, or from a combination of grid-no.1 resistor with either fixed supply or cathode resistor.
- Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
- Obtained from a separate source, from the plate-voltage supply with a voltage divider, or through a series resistor of the value shown for each operating condition. A series grid-no.2 resistor should be used only when the S13 is used in a circuit which is not keyed. Grid-No.2 voltage must not exceed 800 volts under key-up conditions.
- If preceding stage is keyed, the grid-no.1 bias must be obtained partially from a fixed supply in order to limit the plate current and, therefore, the plate dissipation to a safe value.
- From a self-rectified driver.
- This value of useful power is measured at load of output circuit having indicated efficiency.
- Power input is 1.23 times the product of dc voltage and dc current.
- From a driver with a rectified, unfiltered, single-phase, full-wave plate supply.
- Obtained from a separate ac supply in phase with the plate supply or from a low-voltage tap on the plate transformer. Use of a grid-no.2 series voltage-dropping resistor is not recommended.
- Obtained from a grid-no.1 resistor of the value shown or from a combination of grid-no.1 resistor and cathode bias. Fixed-bias operation is not recommended. The bias resistors should not be bypassed for the plate and grid-no.2 voltage supply frequency.
- Power input is 1.11 times the product of the ac voltage (rms) and the dc current.
- Obtained from a separate, rectified, unfiltered, single-phase, full-wave supply in phase with the plate supply, or from the rectified, unfiltered, single-phase, full-wave supply by means of taps on the plate transformer.
OPERATING CONSIDERATIONS

The maximum ratings in the tabulated data for the 813 are limiting values above which the serviceability of the 813 may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

The rated plate voltage and grid-No.2 voltage of this tube are high enough to be dangerous to the user. Care should be taken during adjustment of circuits, especially when exposed circuit parts are at high dc potential.

Heavy leads and conductors together with suitable insulation should be used in all parts of the rf plate tank circuit so that losses due to rf voltages and currents may be kept at a minimum. At the higher frequencies, it is essential that short, heavy leads be used for circuit connections in order to minimize lead inductance and losses.

When a new circuit is tried or when adjustments are made, it is advisable to reduce the plate voltage and grid-No.2 voltage. If the 813 is operated at maximum ratings and grid-No.2 voltage is obtained through a series dropping
resistor, the use of a 5000-ohm protective resistor in the high-voltage supply lead is recommended. When a separate grid-No.2 voltage supply is used, a 4000-ohm protective resistor should be connected in the grid-No.2 supply lead.

A protective device, such as a fuse, should be used to protect not only the plate but also the rf amplifier, neutralization may be necessary to prevent feedback. It is not necessary, however, to provide an external shield for the 813.

The rf impedance between grid No.2 and the cathode must be kept low, usually by means of a suitable bypass capacitor. In telephony service when grid No.2 is modulated, a smaller bypass capacitor than is used for telegraphy service may be required in order to avoid excessive af bypassing. However, if the capacitance value is too small, rf feedback may occur between plate and grid No.1, depending on the circuit layout, operating frequency, and power gain of the stage. AF bypassing difficulties can usually be eliminated if the grid-No.2 bypass capacitor is replaced by a series-resonant circuit which is tuned to resonate at the operating frequency.
This circuit presents a high impedance to audio frequencies but a very low impedance to its resonant frequency.

The base pins of the 813 fit the giant 7-contact socket which should be mounted to hold the tube in a vertical position with base up or down. If

Overheating of the 813 by severe overload may decrease the filament emission. Filament activity may sometimes be restored by operating the filament at rated voltage for ten minutes or more without voltages on the other electrodes. This process may be accelerated by raising the filament voltage to 12 volts (not higher) for a few minutes.

The bulb becomes very hot during operation. To insure adequate cooling, therefore, it is essential that free circulation of air be provided around the 813. The installation of all wires and connections should be made so they will not be close to or touch the bulb, in order to avoid puncture of the glass.

The plate shows no color when the 813 is operated at full ratings under either CCS or ICAS conditions in any class of service. Connections to the plate should be made with a flexible lead to prevent any strain on the seal at the cap.

Grid-No.2 voltage should be obtained from a source of good regulation. The plate voltage should be applied before or simultaneously with the grid-No.2 voltage; otherwise, with voltage on grid-No.2 only, its current may be large enough to cause excessive grid-No.2 dissipation. A dc milliammeter should be used in the grid-No.2 circuit so that its current may be measured and the dc power input determined.

The grid-No.2 current is a very sensitive indication of plate-circuit loading and grid-No.2 current rises excessively (often to the point of damaging the tube) when the amplifier is operated without load. Therefore, care should be taken when tuning a circuit employing an 813 under no-load conditions in order to prevent exceeding the grid-No.2 input rating of the tube.

In plate-modulated class C amplifier service, the 813 can be modulated 100 per cent. The grid-No.2 voltage must be modulated simultaneously along with the plate voltage so that the ratio of grid-No.2 voltage to plate voltage remains constant. Modulation of the grid-No.2 voltage can be accomplished either by connecting grid-No.2 through a separate winding on the modulation transformer to the fixed grid-No.2 voltage supply, or by connecting grid No.2 through an audio-frequency choke of suitable impedance for low audio frequencies to the fixed grid-No.2 supply voltage. The supply end of the choke should be well-bypassed to ground.

When operated as a self-rectifying class C amplifier, or as a class C amplifier with a separate, rectified, unfiltered, single-phase, full-wave plate and grid-No.2 supply, the 813 can be biased by means of a grid-No.1 resistor, a cathode resistor, or a combination of the two methods. The use of grid-No.1 resistor bias is preferred, however, because the bias is automatically adjusted as the load on the circuit.
Push-pull or parallel circuit arrangements can be used when more radio-frequency power is required than can be obtained from a single 813. Two 813's in parallel or push-pull will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage from that required for a single tube. With either connection, the driving power required is approximately twice that for a single tube. The push-pull arrangement has the advantage of simplifying the balancing of high-frequency circuits.

Devices and arrangements shown or described herein may use patents of RCA or others. Information contained herein is furnished without responsibility by RCA for its use and without prejudice to RCA's patent rights.