RCA-6263 is a uhf triode utilizing the "pencil-type" structure with external plate radiator and having an amplification factor of 27. It is intended for use as an rf power amplifier and oscillator in mobile equipment and in aircraft transmitters operating at altitudes up to 60000 feet without pressurized chambers. Its structure makes it particularly suitable in cathode-drive applications. In such applications, the grid is employed to provide rf isolation within the tube between the load circuit and the input circuit. The 6263 can be operated with full ratings at frequencies up to 500 megacycles per second and with reduced ratings at frequencies as high as 1700 megacycles per second.

When operated under ICAS conditions at a frequency of 500 megacycles per second, the 6263 is capable of giving a useful power output of approximately 10 watts as an unmodulated class C rf power amplifier or 7 watts as an unmodulated class C oscillator with a plate input of only 14 watts.

Featured in the design of the 6263 is an efficient radiator for plate cooling by means of convection or forced air. The radiator consists of 9 disc-type cooling fins, one of which serves as the plate terminal and is wider and thicker than the others. This fin provides high thermal conductivity to the supporting cavity or circuit connections. In addition, this fin has a segment removed to provide a straight edge for locating the plane of the heater leads, and for orienting a pair of tubes so that their straight edges face each other to facilitate compact cavity design.

The 6263 also incorporates a newly designed, sturdy grid flange that permits the design of a clamp connector which will not subject the grid seal to appreciable strain, and a longer glass section between the plate cylinder and grid flange to prevent arc-over at very high altitudes.

The coaxial-electrode structure of the 6263 is of the double-ended metal-glass type in which the plate cylinder with attached radiator and cathode cylinder extend outward from each side of the grid flange. The latter is particularly effective in permitting rf isolation of the load circuit from the input circuit. In addition, the disc-seal type of electrode termination, inherent in the design of "pencil-type" tubes, permits the utilization of closed-cavity resonators which minimize power loss through radiation. As compared with more conventional terminals, this type of termination gives much lower inductance values and higher resonant frequencies. Although designed for use in circuits of the coaxial-cylinder type, the 6263 is also suitable for use in circuits of the line type and lumped-circuit type.

The "pencil-type" construction not only meets requirements as to minimum transit time, low lead inductance, and low interelectrode capacitances, but also provides other desirable design features such as extreme sturdiness, small size, light weight, low heater voltage, good thermal stability, and convenience of use in equipment design.

GENERAL DATA

Electrical:

Heater, for unipotential cathode:
- Voltage (AC or DC):
 - Under Transmitting Conditions... 6.0 ±10% volts
 - Under Standby Conditions 6.3 max. volts
- Current at 6.0 volts 0.280 amp
- Amplification Factor 27
- Transconductance, for dc plate current of 27 milliamperes and dc plate voltage of 200 volts 7000 μhmhos
Direct interelectrode capacitances:

<table>
<thead>
<tr>
<th></th>
<th>With External Shield</th>
<th>Without External Shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid to Plate</td>
<td>1.5 μF</td>
<td>1.7 μF</td>
</tr>
<tr>
<td>Grid to Cathode</td>
<td>-</td>
<td>2.9 μF</td>
</tr>
<tr>
<td>Plate to Cathode</td>
<td>-</td>
<td>0.08 max. μF</td>
</tr>
</tbody>
</table>

Mechanical:

- Mounting Position: Any
- Dimensions and Terminal Connections: See Dimensional Outline
- Radiator: Integral part of tube

Cooling:

In many applications, the 6263 does not require forced-air cooling. The radiator in combination with a connector having adequate heat conduction capability will generally provide adequate cooling under conditions of free circulation of air. The cooling must be sufficient to limit the plate-seal temperature to 175°C. When conditions do not provide adequate circulation of air, provision should be made to direct a blast of cooling air from a small blower through the radiator fins. The quantity of air should be sufficient to limit the plate-seal temperature to 175°C.

RF POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy

Key-down conditions per tube without amplitude modulation:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DC Plate Voltage</th>
<th>DC Grid Voltage</th>
<th>DC Plate Current</th>
<th>DC Grid Current</th>
<th>DC Cathode Current</th>
<th>Plate Input</th>
<th>Plate Dissipation</th>
<th>Peak Heater-Cathode Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Ratings, Absolute Values</td>
<td>350 max.</td>
<td>-100 max.</td>
<td>45 max.</td>
<td>25 max.</td>
<td>55 max.</td>
<td>22 max.</td>
<td>8 max.</td>
<td>Heater negative with respect to cathode: 90 max. 90 max. volts</td>
</tr>
<tr>
<td></td>
<td>800 max.</td>
<td>-100 max.</td>
<td>55 max.</td>
<td>25 max.</td>
<td>70 max.</td>
<td>22 max.</td>
<td>13 max.</td>
<td>Heater positive with respect to cathode: 90 max. 90 max. volts</td>
</tr>
<tr>
<td>For Pressures down to 46 mm of Hg**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Operation as Oscillator in Cathode-Drive Circuit at 500 Mc:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DC Plate Voltage</th>
<th>DC Grid Voltage</th>
<th>DC Plate Current</th>
<th>DC Grid Current</th>
<th>Plate Current</th>
<th>Transconductance</th>
<th>Useful Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>-35</td>
<td>40</td>
<td>14</td>
<td>18</td>
<td>1,2</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
<td>40</td>
<td></td>
<td>36</td>
<td>1,2</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Operation as RF Power Amplifier in Cathode-Drive Circuit at 500 Mc:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DC Plate Voltage</th>
<th>DC Grid Voltage</th>
<th>DC Plate Current</th>
<th>DC Grid Current</th>
<th>Driver Power Output</th>
<th>Useful Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>-58</td>
<td>40</td>
<td>15</td>
<td>2.2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Circuit Values (CCS or ICAS Conditions):

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current</td>
<td>0.260</td>
<td>0.300</td>
<td>amp</td>
</tr>
<tr>
<td>Grid-to-Plate Capacitance</td>
<td>1.45</td>
<td>1.95</td>
<td>μf</td>
</tr>
<tr>
<td>Grid-to-Cathode Capacitance</td>
<td>2.45</td>
<td>3.35</td>
<td>μf</td>
</tr>
<tr>
<td>Plate-to-Cathode Capacitance</td>
<td>0.08</td>
<td></td>
<td>μf</td>
</tr>
<tr>
<td>Plate Current</td>
<td>1.2</td>
<td>36</td>
<td>ma</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1.2</td>
<td>5600</td>
<td>8400</td>
</tr>
<tr>
<td>Useful Power Output</td>
<td>3.4</td>
<td>6.5</td>
<td>watts</td>
</tr>
</tbody>
</table>

Note 1: With 6.0 volts ac or dc on heater.
Note 2: With dc plate voltage of 200 volts, cathode resistor of 100 ± 10 ohms, and cathode bypass capacitor of 1000 μf.
Note 3: With 5.4 volts ac or dc on heater.
Note 4: With dc plate voltage of 350 volts, grid resistor adjusted to give a dc plate current of 50 milliampere in a cavity-type oscillator operating at 500 megacycles per second and having an efficiency of about 75 per cent.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

- Continuous Commercial Service
- Intermittent Commercial and Amateur Service

Operating Considerations:

The maximum ratings shown in the tabulated data are limiting values above which the serviceability of the 6263 may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for
each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

The maximum seal temperature of 175°C is a tube rating and is to be observed in the same manner as other ratings. The temperature of the plate seal should be measured on the plate seal. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, 11 W. 25th Street, New York 10, N. Y., in the form of liquid and stick.

The mounting for the 6263 in coaxial-line, parallel-line, or lumped circuits may support the tube securely by one of the three terminals as described in RCA Application Note No. AN-156, "Electrode-Terminal Connections for Pencil-Type UHF Triodes". Connections to the other two terminals must be made by flexible contacts with leads.

The mounting for the 6263 in cavity-type circuits should preferably support the tube by the large fin of the radiator to provide maximum heat conductivity. This fin, which serves as the plate terminal, should make firm contact to the cavity surface.

The heater leads of the 6263 fit the Cinch socket No. 54Al6325 or equivalent. They should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater leads and damage the tube.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.

In plate-modulated class C rf power amplifier service, the 6263 should be supplied with bias from a grid resistor, from suitable combination of grid resistor and fixed supply, or from a suitable combination of grid resistor and cathode resistor. The cathode resistor should be bypassed for both audio and radio frequencies. The combination method of grid resistor and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

In cathode-drive plate-modulated class C telephony service, the 6263 can be modulated 100 per cent if the rf driver stage is also modulated 100 per cent simultaneously. Care should be taken to insure that the driver-modulation and the amplifier modulation voltages are exactly in phase. In such service, the 6263 requires increased driving power, but increased power output is obtained as shown in the tabulated data.

In class C rf telegraphy service, the 6263 may be supplied with bias by any convenient method. When the tube is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to limit the plate current and, therefore, the plate dissipation to a safe value. If the 6263 is operated at a plate voltage of 300 volts, a fixed bias of at least -10 volts should be used.

Fig. 1 - Cooling Requirements for Type 6263.

In cathode-drive circuits, the grid driving voltage and the developed rf plate voltage act in series to supply the load circuit. Furthermore, the power required to drive the grid is greatly increased over that needed for grid-drive circuits. However, this increase in power is not lost, because it is transferred to the plate circuit and appears there as tube output.
Another distinction between cathode-drive and grid-drive circuits is that in a grid-drive circuit where a surplus of grid driving power is always available, the power output is only moderately affected by variations in tube characteristics and operating conditions with the result that the power output is fairly independent of such variations. In a cathode-drive circuit, however, because part of the grid-driving power is transferred to the output circuit, the power output continues to increase with increased driving power to the point that the tube may be seriously overloaded. This difference in the operating nature of the two circuits is especially important when several tubes are operated in cascade.

In the grid-drive circuit, the output from the final stage is affected to only a minor degree by variations in tube characteristics and operating conditions, whereas in a cathode-drive circuit, the effects of either high or low efficiency are cumulative and can produce wide differences in power output. It is important, therefore, in the design of cathode-drive circuits that due allowances are made for the normal variations which can be expected from individual tubes.

For example, it is not good design practice to base the expected performance of cascaded cathode-drive stages on a few high performance tubes. If this practice were to be followed, a substantial percentage of tubes would either...
not give the anticipated performance or would be disastrously overloaded.

In tuning an rf amplifier in a cathode-drive circuit, it must be remembered that variations in the load on the output stage will produce corresponding variations in the load on the driving stage. This effect will be noticed by the simultaneous increase in plate currents of both the output and driving stages.

Parallel circuit arrangements may be used when more radio-frequency power is required than can be obtained from a single tube. Two tubes in parallel will give approximately twice the power output of one tube. The parallel connection requires no increase in exciting voltage over that required to drive a single tube, but the driving power required is approximately twice that for a single tube. When two or more tubes are used in the circuit, precautions should be taken to balance the plate currents.

REFERENCES

RCA Application Note "Electrode-Terminal Connections for Pencil-Type EEP Triodes", No. AN-156 (September, 1953).
NOTE 1: MAX. ECCENTRICITY OF \(\phi \) (AXIS) OF RADIATOR-CORE CAP OR GRID-TERMINAL FLANGE WITH RESPECT TO THE \(\phi \) (AXIS) OF THE CATHODE TERMINAL IS 0.015".

NOTE 2: TILT OF PLATE-TERMINAL FIN OF RADIATOR WITH RESPECT TO ROTATIONAL AXIS OF CATHODE CYLINDER IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE PLATE-TERMINAL FIN PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM THE STRAIGHT EDGE OF THE PLATE-TERMINAL FIN FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.035".

NOTE 3: TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO ROTATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.025".

TERMINAL CONNECTIONS

H: HEATER
K: CATHODE CYLINDER
 (Adjacent to heater lead terminals)
G: GRID FLANGE
 (Between glass sections)
P: PLATE CYLINDER
 (With integral radiator)