CF 3
 H.F.-Penthode-Selektode

Für die Beschreibung dieser Röhre, für die Kurven, Sockelschaltung und Abmessungen wird auf die Röhre AF 3 verwiesen. Diese Röhre ist bis auf die Kathodendaten vollkommen mit der Röhre AF 3 identisch.

Betriebsdaten

Heizspannung Vf	$=13 \mathrm{~V}$	$=13 \mathrm{~V}$
Heizstrom If	$=0,200 \mathrm{~A}$	$=0,200 \mathrm{~A}$
Anodenspannung Va	$=200 \mathrm{~V}$	$=100 \mathrm{~V}$
Schirmgitterspannung Vg2	$=100 \mathrm{~V}$	$=100 \mathrm{~V}$
Anodenstrom (bei Vg1 = ca. -3 V).. 1 la	$=8,0 \mathrm{~mA}$	$=8,0 \mathrm{~mA}$
Anodenstrom (bei $V \mathrm{~g} 1=-55 \mathrm{~V}$) $\ldots . . \mathrm{la}$	$\leqq 0,015 \mathrm{~mA}$	$\leqq 0,015 \mathrm{~mA}$
Schirmgitterstrom Ig2	$=2,6 \mathrm{~mA}$	$=2,6 \mathrm{~mA}$
Maximale Steilheit $S_{\text {max }}$	$=2,8 \mathrm{~mA} / \mathrm{V}$	
Normale Steilheit $S_{\text {norm }}$	$=1,8 \mathrm{~mA} / \mathrm{V}$	$=1,8 \mathrm{~mA} / \mathrm{V}$
Minimale Steilheit S	$\leqq 0,002 \mathrm{~mA} / \mathrm{V}$	$\leqq 0,002 \mathrm{~mA} / \mathrm{V}$
Normaler innerer Widerstand $R i_{\text {norm }}$	= 0,9 Megohm	$=0,25 \mathrm{Megohm}$
Innerer Widerstand Ri	$\geqq 10 \mathrm{Megohm}$	$\geqq 10 \mathrm{Megohm}$
BremsgitterspannungVg3	$=0 \mathrm{~V}$	$=0 \mathrm{~V}$

Ferner gelten noch für die Anwendung dieser Röhre folgende allgemeine Daten und Beschränkungen:
Kapazität zwischen Anode und Gitter $1 \ldots \ldots . . .$. . Cag1 $\leqq 0,003 \mu \mu \mathrm{~F}$
Maximaler Widerstand im Gitterkreis bei selbstregelnder

Maximaler Widerstand zwischen Kathode und Heizfaden Rfk max $=20.000 \mathrm{Ohm}^{1}$) Maximale Spannung zwischen Heizfaden und Kathode.. Vfk max $=125 \mathrm{~V}$
${ }^{1}$) Bei einem Kathodenwiderstand von weniger als 1000 Ohm muss der Entkopplungskondensator mindestens $0,1 \mu \mathrm{~F}$ sein, bei einem grösseren Widerstand mindestens $1 \mu \mathrm{~F}$.

Abbildung 1 zeigt die Prinzipschaltung für die Anwendung dieser Röhre mit Handlautstärkeregelung bei 100 Volt Anodenspannung. Für die

Dimensionierung der verschiedenen Widerstände werden folgende Werte empfohlen:

Va (V)	Vg 2 $(\mathrm{~V})$	Ia (mA)	Ig 2 $(\mathrm{~mA})$	Ik (mA)	Vk (V)	R 2 (Ohm)	R 3 (Ohm)	R 4 (Ohm)
100	100	8	2,6	10,6	3	32000	20000	250

Für die entsprechende Schaltung bei 200 V Anodenspannung verweisen wir auf die Abb. 7 auf Seite 31.

Prinzipschaltung für Verwendung der Röhre CF 3 als H.F.-Verstärker mit Handlautstärkeregelung bei niedriger Anodenspannung.

Except for the heater data the CF3 is equal to the AF3 For further data and curves please refer to AF3

