For Color Television Film Pickup Service

- Electrostatic-Focus, Magnetic-Deflection
- Low-Power "Dark Heater" — 0.6 Watt
- Separate Mesh Connection
- Precision Outer-Diameter Glass Bulb
- Tested to Stringent Signal Uniformity Specifications

General Data

Dimensions See Dimensional Outline
Direct Interelectrode Capacitancea
Target to all other electrodes 11 pF
Focusing Method Electrostatic
Deflection Method Magnetic
Heater Power 0.6 W
Maximum Useful Picture Size 0.6x0.8 in
(15.24 x 20.32 mm)

Orientation of Quality Rectangle:
Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin.

Base
Small-Button Super Ditetrar 8-Pin (JEDEC No. E8-78)
Socket Aldenb No.208-SPEC. or equivalent
Weight 11 (312.4 g) oz
Operating Position Any
Deflection Alignment Assemblyc
Cleveland Electronics No.15VYA-333, or equivalent
Maximum Ratings, Absolute-Maximum Values:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-No.6 & 3 Voltage</td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.5 Voltage</td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.4 Voltage</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.2 Voltage</td>
<td>750</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.1 Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative bias value</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>Positive bias value</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>Peak Heater-Cathode Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater negative with respect to cathode</td>
<td>125</td>
<td>V</td>
</tr>
<tr>
<td>Heater positive with respect to cathode</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Heater Voltage</td>
<td>6.3 ± 5%</td>
<td>V</td>
</tr>
<tr>
<td>Target Voltage</td>
<td>125</td>
<td>V</td>
</tr>
<tr>
<td>Target Dark Current</td>
<td>0.25</td>
<td>µA</td>
</tr>
<tr>
<td>Peak Target Current</td>
<td>0.60</td>
<td>µA</td>
</tr>
<tr>
<td>Faceplate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumination</td>
<td>5000</td>
<td>fc</td>
</tr>
<tr>
<td>Temperature</td>
<td>71</td>
<td>°C</td>
</tr>
</tbody>
</table>

Typical Operation and Performance Data:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-No.6 (Decelerator) & 3 Voltage</td>
<td>1400</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.5 Voltage</td>
<td>700 to 840</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.4 (Beam-Focus Electrode) Voltage</td>
<td>230 to 260</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.2 (Accelerator) Voltage</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.1 Voltage (For Picture Cutoff)</td>
<td>-45 to -100</td>
<td>V</td>
</tr>
<tr>
<td>Signal-To-Noise Ratio (Approximate)</td>
<td>300:1</td>
<td></td>
</tr>
<tr>
<td>Typical Resolution:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>1400/1200</td>
<td>TV Lines</td>
</tr>
<tr>
<td>Corner</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
Amplitude Response to 400 TV Line Square-Wave Test Pattern at Center of Picturet \hspace{1cm} 60/55 \%

Average "Gamma" of Transfer Characteristic \hspace{1cm} 0.65

Lag Per Cent of Initial Value of Signal-Output Current 1/20 Second after Illumination is Removedn \hspace{1cm} 25 \%

\textbf{Typical Sensitivity}

Faceplate Illumination \hspace{1cm} 10 \hspace{1cm} \text{fc}

Target VoltageP,q \hspace{1cm} 15 to 45 \hspace{1cm} \text{V}

Dark Currentq,r \hspace{1cm} 0.010 \hspace{1cm} \text{\mu A}

Signal Output Current (Typical)s \hspace{1cm} 0.30 \hspace{1cm} \text{\mu A}

\textbf{Notes}

a This capacitance, which effectively is the output impedance of the vidicon, is increased when the tube is mounted in the deflecting-yoke assembly. The resistive component of the output impedance is in order of 100 megohms.

b Made by Alden Products Co., 9140 North Main St., Brockton 64, Massachusetts.

c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.

e Grid-No.6 & 3 voltage must always be greater than grid-No.5 voltage. The maximum voltage difference between these electrodes, however, should not exceed 800 volts. The recommended ratio of grid-No.5 to grid-No.6 & 3 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.

f The power dissipation at grid No.2 should not exceed one watt, a condition normally met when the tube is operated at the specified maximum grid-No.2 rating and when the specified peak target current rating is not exceeded. However, if the vidicon is operated continuously with grid-No.1 voltage near or approaching zero bias, grid-No.2 voltage should not exceed 350 volts dc maximum.
9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.

h For condition where "white light" is uniformly diffused over entire tube face.

i With no blanking voltage on grid No.1.

m Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.

n For initial signal-output current of 0.2 microampere and a dark current of 0.02 microampere.

p Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.

q The target voltage for each vidicon must be adjusted to that value which gives the desired operating dark current.

r The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.

s Defined as the component of the highlight target current after the dark-current component has been subtracted.

t This typical capability may be limited by conditions external to the tube such as test pattern material, optics and/or yoke.
Basing Diagram (Bottom View)

TARGET

G3
G6

G4

G1
2

G2
5

G5

SHORT PIN IC

DIRECTION OF LIGHT: INTO FACE END OF TUBE

8MD

Pin 1: Heater
Pin 2: Grid No.1
Pin 3: Grid No.4
Pin 4: Grids No.3 & No.6
Pin 5: Grid No.5
Pin 6: Grid No.2
Pin 7: Cathode
Pin 8: Heater
Flange: Target
Short Index Pin:
 Internal Connection —
 Make No Connection
Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).

Note 1 — Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin.

Note 2 — Within this area the minimum bulb diameter dimension does not apply.

Note 3 — Faceplate thickness is 0.135" ± 0.005".
Recommended Location of Deflecting Yoke and Alignment Coil to obtain Optimum Geometry and Optimum Output Signal Uniformity

Typical Range of Dark Current

Scanned area of photoconductive layer: 0.6" x 0.8"
Faceplate temperature: 30°C approx.
Typical Persistence Characteristics

INITIAL HIGHLIGHT SIGNAL-OUTPUT MICROAMPERES = 0.2
SCANNED AREA OF PHOTOCOUDUCTIVE LAYER = 0.6" x 0.8"
FACEPLATE TEMPERATURE = 30°C APPROX.
Light Transfer Characteristics

ILLUMINATION: UNIFORM OVER PHOTOCONDUCTIVE LAYER.
SCANNED AREA OF PHOTOCONDUCTIVE LAYER = 0.6" X 0.8"
FACEPLATE TEMPERATURE = 30° C APPROX.

DARK CURRENT (MICROAMPERE) = 0.05

SIGNAL OUTPUT — MICROAMPERES

0.001
0.01
0.1
1
10
100
1000

0.287° K TUNGSTEN ILLUMINATION ON TUBE FACE — FOOTCANDLES

92CM-12347

DATA 5
6-72
Typical RCA Type I Spectral Response