Medium-Mu Triode—Sharp-Cutoff Pentode

ELECTRICAL

Heater Characteristics and Ratings
- Voltage (AC or DC) .. 6.3 ± 0.6 V
- Current at 6.3 V ... 0.410 A
- Heater-cathode voltage................................. 1.10 max V

Direct Interelectrode Capacitances (Approx.)

Triode Unit
- \(P_T\) to \(G_T\) .. 1.8 pF
- \(G_T\) to \(K, H\) ... 3.3 pF
- \(P_T\) to all except \(G_{1p}\) 1.7 pF

Pentode Unit (With external shield)
- Input ... 6.2 pF
- Output ... 3.5 pF
- \(P_P\) to \(G_{1p}\) ... 0.009 pF
- \(G_{1p}\) to \(G_{2p}\) ... 1.5 pF

Between Triode and Pentode Units
- \(P_T\) to \(P_P\) .. 0.025 max pF
- \(P_P\) to \(G_T\) .. 0.01 max pF
- \(P_T\) to \(G_{1p}\) ... 0.01 max pF
- \(G_T\) to \(G_{1p}\) ... 0.01 max pF

MECHANICAL

Operating Position Any
Type of Cathode Coated Unipotential
Maximum Overall Length 2 in
Maximum Seated Length 1-3/4 in
Diameter .. 0.750 to 0.875 in
Envelope .. JEDEC T6-1/2
Base ... Small-Button Noval 9-Pin (JEDEC No. E9-1)

TERMINAL DIAGRAM (Bottom View)

- Pin 1 – Cathode, Pentode
- Grid No.3, Internal Shield
- Pin 2 – Pentode Grid No.1
- Pin 3 – Same as Pin 1
- Pin 4 – Heater
- Pin 5 – Heater
- Pin 6 – Pentode Plate
- Pin 7 – Pentode Grid No.2
- Pin 8 – Triode Plate
- Pin 9 – Triode Grid

CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>Triode</th>
<th>Pentode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>100</td>
<td>170</td>
</tr>
<tr>
<td>Grid-No.2 Voltage</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>Grid-No.1 Voltage</td>
<td>-3</td>
<td>-1.2</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>20</td>
<td>55b</td>
</tr>
</tbody>
</table>

RADIO CORPORATION OF AMERICA

Electronic Components and Devices

Harrison, N. J.

DATA

12-65
<table>
<thead>
<tr>
<th></th>
<th>Triode</th>
<th>Unit</th>
<th>Pentode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Resistance (Approx.)</td>
<td>-</td>
<td>0.35</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>Transconductance</td>
<td>9000</td>
<td>11000</td>
<td>μhmhos</td>
<td></td>
</tr>
<tr>
<td>Plate Current.</td>
<td>15</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Grid No.2 Current.</td>
<td>-</td>
<td>3</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DESIGN-MAXIMUM RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Triode</th>
<th>Unit</th>
<th>Pentode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate-Supply Voltage</td>
<td>600</td>
<td>V</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
<td>140</td>
<td>V</td>
<td>275</td>
<td>V</td>
</tr>
<tr>
<td>Grid-No.2 Supply Voltage</td>
<td>-</td>
<td>600</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Grid-No.2 (Screen-Grid) Voltage</td>
<td>-</td>
<td>275</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Grid-No.1 (Control-Grid) Voltage</td>
<td>-</td>
<td>-50</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Cathode Current</td>
<td>22</td>
<td>mA</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>1.8</td>
<td>W</td>
<td>2.4</td>
<td>W</td>
</tr>
<tr>
<td>Grid-No.2 Input<sup>c</sup></td>
<td>-</td>
<td>0.55</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM CIRCUIT VALUES

Grid-No.1-Circuit Resistance
- For fixed-bias operation | 0.5 | 1 | MΩ |
- For cathode-bias operation | 0.5 | 2.2 | MΩ |

^a The hum should be minimized in intercarrier receiver applications by limiting the heater-cathode voltage to 100 volts rms, and in AM receivers to 50 volts rms.

^b Grid No.2 to grid No.1; approximate value.

^c When control grid bias is between -1.5 and -2 volts, screen dissipation is limited to 0.50 watt. When this bias is greater than -2 volts, maximum screen dissipation is 0.36 watt.