SUPER-POWER SHIELDED-GRID BEAM TRIODE

COAXIAL-ELECTRODE STRUCTURE WATER-COOLED ELECTRODES 500-KW CW POWER OUTPUT INTEGRAL WATER DUCTS

Useful with full input up to 75 Mc

GENERAL DATA

Electrical:
Filament, Multistrand Thoriated Tungsten:
Voltage (Single-phase AC or DC) 7.3 min. volts
Current at 7.3 volts ... 1040 amp
Current at 7.8 volts ... 1130 amp
Starting current .. Must never exceed 1700 amperes, even momentarily
Cold resistance .. 0.0013 ohm
Minimum heating time ... 60 seconds
Amplification Factor, for dc grid
volts = -50 and dc plate voltage
adjusted to give dc plate current
of 10 amperes .. 60
Direct Interelectrode Capacitances:
Grid to plate .. 12 μμf
Grid to filament ... 1300 μμf
Plate to filament ... 160 μμf

Mechanical:
Operating Position .. Vertical, with lifting ring up
Maximum Overall Length 40"
Maximum Diameter .. 10.06"
Weight (Approx.) .. 140 lbs
Terminal Connections (See Dimensional Outline):

\[
\begin{align*}
F_C &= \text{Filament Cylindrical Terminal} \\
F_F &= \text{Filament Flange Terminal} \\
K_{R_1} &= \text{Output- Circuit- Return Terminal} \\
P &= \text{Plate Terminal} \\
K_{R_2} &= \text{Flange Input- Circuit- Return Terminal} \\
K_{R_3} &= \text{Cylindrical Input- Circuit- Return Terminal} \\
G &= \text{Grid Terminal}
\end{align*}
\]

Air Cooling:
It is important that the temperature of any external part of the tube should not exceed 150° C. In general, forced-air cooling of the ceramic bushings will not be required unless the 6949 is used in cavity-type circuits or in a confined space without free circulation of air. Under such conditions, provision should be made for blowing an adequate quantity of air at the ceramic bushings to limit their temperature to 150° C. Forced-air cooling of the output-
circuit-return terminal \((K_B)\) and the flange input-circuit-return terminal \((K_A)\) may be necessary to prevent exceeding the maximum temperature rating of 150°C, particularly at VHF frequencies.

Water Cooling:

Water cooling of the beam-forming cylinder, grid-terminal, and the plate is required. The water flow must start before application of any voltages and preferably should continue for several minutes after removal of all voltages. Interlocking of the water flow for each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate water flow. The use of distilled water is essential.

Water Flow:

<table>
<thead>
<tr>
<th>Absolute Min. Flow gpm</th>
<th>Typical Flow gpm</th>
<th>Pressure Drop* for Typical Flow psi</th>
<th>Max. Gauge Pressure psi</th>
</tr>
</thead>
</table>

To plate (in direction shown on Dimensional Outline):

- For plate dissipation up to 125 kw. 40 44 18 100
- For plate dissipation of 260 kw 60 66 35 100
- For plate dissipation of 330 kw 70 77 48 100
- For plate dissipation of 400 kw 80 88 65 100
- To grid-terminal connector 1
- To beam-forming cylinder 7 8 9 50

Outlet Water Temperature (Any outlet) . . 70 max. °C
Minimum Plate-Water-Column Resistance . 1/2 megohm per kv of dc plate voltage
Ceramic-Bushing Temperature 150 max. °C
Metal-Surface Temperature 150 max. °C

Fittings:

Fittings for the plate and beam-forming-cylinder water connections may be obtained from the Breco Division, Perfecting Service Co., 332 Astatic Ave., Charlotte 6, North Carolina, USA.

* See next page.
LINEAR RF POWER AMPLIFIER
Single-Sideband Suppressed-Carrier Service
Crest of modulation conditions

Maximum CCS\(^*\) Ratings, Absolute Values:

For altitudes up to 5,000 feet and frequencies up to 75 Mc

- DC PLATE VOLTAGE 20000 max. volts
- MAX.-SIGNAL DC PLATE CURRENT 60 max. amp
- MAX.-SIGNAL PLATE INPUT 1100000 max. watts
- MAX.-SIGNAL DC GRID CURRENT 1.5 max. amp
- PLATE DISSIPATION (Average) 400000 max. watts

Typical CCS Class B Operation at 10 Mc:

- DC Plate Voltage 18000 volts
- DC Grid Voltage (Approx.)\(^*\) -300 volts
- Zero-Signal DC Plate Current 5 amp
- Effective RF Load Resistance 170 ohms
- "Single-Tone" Operation:\(^\circ\)
 - Max.-signal dc plate current 57 amp
 - Max.-signal dc grid current 0.35 amp
 - Max.-signal peak rf grid voltage 1900 volts
 - Max.-signal driving power (Approx.) ... 100000 watts
 - Max.-signal power output (Approx.) 600000 watts
- "Two-Tone" Operation:\(^\bullet\)
 - Average dc plate current 37 amp
 - Average dc grid current 0.22 amp
 - Peak envelope rf grid voltage 1900 volts
 - Average power output (Approx.) 300000 watts
 - Peak envelope power output (Approx.) ... 600000 watts

RF POWER AMPLIFIER — Class C Telegraphy\(^\#\)
and
RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCS\(^*\) Ratings, Absolute Values:

For altitudes up to 5,000 feet and frequencies up to 75 Mc

- DC PLATE VOLTAGE 20000 max. volts
- DC GRID VOLTAGE -1000 max. volts
- DC PLATE CURRENT 50 max. amp
- DC GRID CURRENT 1.5 max. amp
- PLATE INPUT 1000000 max. watts
- PLATE DISSIPATION 400000 max. watts

Typical CCS Operation at 425 Kc:

- DC Plate Voltage 17500 volts
- DC Grid Voltage\(^\bullet\) -625 volts
- Peak RF Grid Voltage 2000 volts
- DC Plate Current 40 amp
- DC Grid Current 1 amp

\,\,\,\,**\,\,\#\,\#\,*\,\: See next page.
SUPER-POWER SHIELDED-GRID BEAM TRIODE

Driving Power (Approx.).......................... 2000 watts
Useful Power Output (Approx.).................... 500000 watts

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Current</td>
<td>1</td>
<td>870</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>1.2</td>
<td>48</td>
</tr>
<tr>
<td>Direct Inter-electrode Capacitances:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid to plate</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Grid to filament</td>
<td>—</td>
<td>1150</td>
</tr>
<tr>
<td>Plate to filament</td>
<td>—</td>
<td>140</td>
</tr>
</tbody>
</table>

Note 1: With 7.3 volts ac on filament.
Note 2: For dc grid volts = —50 and dc plate voltage adjusted to give dc plate current of 10 amperes.

* Directly across cooled element for the indicated typical flow.
• Continuous Commercial Service.
* Obtained from a fixed supply. Value should be adjusted to give indicated value of zero-signal plate current.
* "Single-Tone" operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
** Includes tube losses, circuit losses, and "swamping power" losses.
** "Two-Tone" operation refers to the simultaneous amplification of the two equal-amplitude, radio-frequency signals resulting from modulation of a single-sideband, suppressed-carrier transmitter by two audio-frequency signals of equal amplitude. The data shown for "Two-Tone" modulation refer to the case in which the peak amplitude of the resultant rf grid signal is equal to the "Max.-Signal Peak RF Grid-No.1 Voltage" as specified under "Single-Tone" modulation.
Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
▲ Obtained from fixed supply.
△ Additional driving power is required at frequencies where circuit losses become significant.

OPERATING CONSIDERATIONS

A high-speed, electronic protective device must be used to remove the plate voltage within a few microseconds in the event of abnormal operation such as internal arcing. The protective device employed to remove the plate voltage in any installation must be approved by the RCA Electron Tube Division. In addition, the grid circuit should be provided with overload relays which will act to remove within a period of 0.1 second all grid power in the event of excessive grid-current flow. Inquiries concerning a high-speed, electronic protective device for removal of plate voltage from the 6949 may be addressed to Commercial Engineering, Electron Tube Division, RCA, Harrison, N.J.
The 6949 can be operated with maximum ratings at frequencies up to 75 Mc and with reduced ratings to higher frequencies. The capabilities of the 6949 for operation at higher frequencies and at higher powers have not yet been determined but requests for information on specific applications will be welcomed.

Notes 1 to 8: See next page.
NOTE 1: SOCKET NO. 412-BS 1-1/2" FOR THIS PLUG MAY BE OBTAINED FROM BRECO DIVISION, PERFECTING SERVICE CO., 332 ATANDO AVE., CHARLOTTE 6, N.C.

NOTE 2: SOCKET NO. 4EF4 1/2" (WITH FEMALE PIPE-THREAD CONNECTION) OR SOCKET NO. 4EM4 1/2" (WITH MALE PIPE-THREAD CONNECTION) MAY BE OBTAINED FROM SUPPLIER INDICATED IN NOTE 1.

NOTE 3: DIRECTION OF WATER FLOW THROUGH TUBE MUST BE IN DIRECTION INDICATED BY MARKINGS AT WATER CONNECTIONS.

NOTE 4: USE FOR FILAMENT POWER ONLY. INPUT-CIRCUIT RETURN SHOULD BE MADE TO BOTH INPUT-CIRCUIT-RETURN TERMINALS (K_{R2} & K_{R1}); OUTPUT-CIRCUIT RETURN SHOULD BE MADE TO OUTPUT-CIRCUIT-RETURN TERMINAL (K_{R1}).

NOTE 5: REMOVE THIS CABLE BEFORE OPERATING TUBE AND KEEP CABLE FOR FUTURE TUBE HANDLING.

NOTE 6: DO NOT TAMPER WITH THESE BOLTS.

Notes 7 & 8: See next page.
NOTE 7: INLET WATER CONNECTIONS (IN) ARE BOTH ON SAME SIDE OF TUBE AND TO THE RIGHT WHEN TUBE IS VIEWED WITH NAME PLATE TOWARD OBSERVER.

NOTE 8: THIS AREA IS SUBJECT TO A MAXIMUM TAPER OF 0.060" TO THE INCH. THE MAXIMUM DIAMETER ALONG THIS TAPER WILL BE ON THE END TOWARD THE CERAMIC.

DETAILS OF SUGGESTED WATER-COOLED GRID-Terminal Connector

VIEW AT A-A'
TYPICAL CONSTANT-CURRENT CHARACTERISTICS

$E_f = 7.3$ VOLTS
$I_C =$ GRID AMPERES
$I_B =$ PLATE AMPERES

GRID VOLTS (EC)

PLATE KILOVOLTS (E_B)

ELECTRON TUBE DIVISION

92CM-9305

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY