BEAM POWER TUBE

<table>
<thead>
<tr>
<th>Coaxial-Electrode Structure</th>
<th>Water-Cooled Electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic-Metal Seals</td>
<td>Integral Water Ducts</td>
</tr>
<tr>
<td>Low Drive Requirements</td>
<td>28-kW TV Output at 550 Mc</td>
</tr>
</tbody>
</table>

For use at frequencies from 225 to 1000 Mc

GENERAL DATA

Electrical:

- **Filament, 2-Section Multistrand**
 - Thoriated Tungsten:
 - Voltage per section (AC or DC): \(1.25 \text{ min.}^0\) volts
 - \(1.35 \text{ typical} \) volts
 - \(1.50 \text{ max.} \) volts

- **Current per section at 1.35 volts**: 1000 amp
- **Starting current per section**: Must never exceed 1200 amperes, even momentarily

- **Cold resistance per section**: 0.00025 ohm
- **Minimum heating time**: 30 sec

- **Mu-Factor, Grid No.2 to Grid No.1**
 - (Approx.) for plate volts = 9300, grid-No.2 volts = 950, and plate amperes = 4.3.
 - \(0.1 \text{ max.} \) \(\mu\text{f}\)

- **Direct Interelectrode Capacitances**
 - Grid No.1 to plate: 365 \(\mu\text{f}\)
 - Grid No.1 to filament and grid No.2: 30 \(\mu\text{f}\)
 - Plate to filament and grid No.2: 11.38"

- **Internal Bypass Capacitors between Grid No.2 and Cathode**
 - (Approx., total): 18000 \(\mu\text{f}\)

Mechanical:

- **Operating Position**: Tube axis vertical, with plate terminal either up or down
- **Overall Length**: 7.59" + 0.38" = 0.50"
- **Maximum Diameter**: 11.38"
- **Weight (Approx.)**: 28 lbs

Terminal Connections (See Dimensional Outline):

- **F₁** - Fil. Sect. No.1 & Water Conn.
- **F₂** - Fil. Sect. No.2 & Water Conn.
- **G₁** - RF Grid-No.1 & Term. Contact Surface
- **G_{1W}** - DC Grid-No.1 & Water Conn.
- **G₂** - DC Grid-No.2 & Water Conn.
- **K_R** - RF Cath. Term. Contact Surface For RF Circuit Returns
- **F_M** - Common Point of Fil. Sections for DC Circuit Returns, Ground, & Water Conn.

The above text refers to diagrams not visible in the image.

\(\text{O.}^*\): See next page.

2-59

ELECTRON TUBE DIVISION
Radio Corporation of America, Harrison, New Jersey
Air Cooling:
Forced-air cooling of the ceramic bushing at the grid-No.1 seal and at the plate seal may be required in order to limit the temperature of the ceramic bushing at either seal to the specified maximum value of 150° C. Under such conditions, provision should be made for blowing air at the ceramic bushings through suitable openings in the coaxial-cylinder cavity circuit.

Water Cooling:
Water cooling of the filament-section blocks, rf cathode terminals, grid-No.1 block, grid-No.2 block, and plate is required. The water flow must start before application of any voltages and preferably should continue for several seconds after removal of all voltages. Interlocking of the water flow through each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate water flow.

Water Flow:

<table>
<thead>
<tr>
<th>Absolute Flow</th>
<th>Typical Flow</th>
<th>Pressure Differential for Typical Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 gpm</td>
<td>1.2 gpm</td>
<td>17 max.</td>
</tr>
<tr>
<td>Through filament-section-No.1 block.</td>
<td>Through filament-section-No.2 block.</td>
<td>Through filament-common-point connection.</td>
</tr>
<tr>
<td>Dimensional Outline:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| For plate dissipation up to 16 kw. | For plate dissipation of 20 kw. | For plate dissipation of 32 kw. | 12 | 14 | 14 | 16 | 20 | 22 |\{25 av.\}
| | | | | | | | | |\{31 max.\} |
| | | | | | | | | |\{32 av.\}
| | | | | | | | | |\{40 max.\} |
| | | | | | | | | |\{60 av.\}
| | | | | | | | | |\{75 max.\} |

Gauge Pressure at Any Inlet
Except Plate Inlet. 70 max. psi
Gauge Pressure at Plate Inlet. 100 max. psi
Ceramic-Bushing Temperature. 150 max. °C
Outlet-Water Temperature (Any outlet). 70 max. °C
Min. Plate-Water-Column Resistance. 4 megohms per kv of dc plate voltage at 25° C

***: See next page.
BEAM POWER TUBE

LINEAR RF POWER AMPLIFIER

Class AB Single-Sideband Suppressed-Carrier Service

Crest of modulation conditions

<table>
<thead>
<tr>
<th>Maximum CCS* Ratings, Absolute Values:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>225 to 1000 Mc</td>
</tr>
<tr>
<td>DC PLATE VOLTAGE 9000 max. volts</td>
</tr>
<tr>
<td>DC PLATE-SUPPLY VOLTAGE 10000 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 (SCREEN-GRID) VOLTAGE 1250 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 SUPPLY VOLTAGE 1350 max. volts</td>
</tr>
<tr>
<td>MAX.-SIGNAL DC PLATE CURRENT 7 max. amp</td>
</tr>
<tr>
<td>MAX.-SIGNAL PLATE INPUT 60000 max. watts</td>
</tr>
<tr>
<td>MAX.-SIGNAL GRID-No.2 INPUT 750 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION 35000 max. watts</td>
</tr>
</tbody>
</table>

Typical CCS Operation:

At 550 Mc*

| DC Plate Voltage 8000 volts |
| DC Grid-No.2 Voltage 1200 volts |
| DC Grid-No.1 (Control-grid) Voltage 115 volts |
| Max.-Signal DC Plate Current 2.5 amp |
| Max.-Signal DC Plate Current 6 amp |
| Zero-Signal DC Grid-No.2 Current (Approx.) 0.15 amp |
| Max.-Signal DC Grid-No.2 Current (Approx.) 0.35 amp |
| Max.-Signal DC Grid-No.1 Current (Approx.) 0 amp |
| Max.-Signal Driver Power Output (Approx.) 90 watts |
| Output-Circuit Efficiency (Approx.) 90 % |
| Max.-Signal Useful Power Output (Approx.) 15000 watts |

RF POWER AMPLIFIER — Class B Television Service

Synchronizing-level conditions per tube unless otherwise indicated

<table>
<thead>
<tr>
<th>Maximum CCS* Ratings, Absolute Values:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>225 to 1000 Mc</td>
</tr>
<tr>
<td>DC PLATE VOLTAGE 9000 max. volts</td>
</tr>
<tr>
<td>DC PLATE-SUPPLY VOLTAGE 10000 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 (SCREEN-GRID) VOLTAGE 1100 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2-SUPPLY VOLTAGE 1200 max. volts</td>
</tr>
<tr>
<td>DC PLATE CURRENT 8.25 max. amp</td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) CURRENT 0.5 max. amp</td>
</tr>
</tbody>
</table>

See next page.
BEAM POWER TUBE

PLATE INPUT: 70000 max. watts
GRID-No.2 INPUT (For black picture): 750 max. watts
PLATE DISSIPATION (For black picture): 36000 max. watts

Typical CCS Operation:

At 550 Mc:

Bandwidth of
DC Plate Voltage: 8500 8000 volts
DC Grid-No.2 Voltage: 1000 1000 volts
DC Grid-No.1 Voltage: -140 -140 volts
Peak RF Grid-No.1 Voltage:
Synchronizing level: 180 180 volts
Blanking level: 140 140 volts
DC Plate Current:
Synchronizing level: 8 7.8 amp
Blanking level: 5.8 5.6 amp
DC Grid-No.2 Current (Approx.):
Synchronizing level: 0.75 0.75 amp
Blanking level: 0.55 0.55 amp
DC Grid-No.1 Current (Approx.):
Synchronizing level: 0.4 0.35 amp
Blanking level: 0.15 0.13 amp

Driver Power Output (Approx.):
Synchronizing level: 800 1000 watts
Blanking level: 450 550 watts

Output-Circuit Efficiency (Approx.): 90 85 %

Useful Power Output (Approx.):
Synchronizing level: 28000 19000 watts
Blanking level: 17000 11500 watts

PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony

Carrier conditions per tube for use with a maximum modulation factor of 1 unless otherwise indicated

Maximum CCS Ratings, Absolute Values:

225 to 1000 Mc

DC PLATE VOLTAGE: 5500 max. volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE: 1000 max. volts
PEAK GRID-No.2 VOLTAGE (DC + max. modulation swing): 1350 max. volts
DC GRID-No.1 (CONTROL-GRID) VOLTAGE: -250 max. volts

See next page. Indicates a change.
RCA 6806 BEAM POWER TUBE

Typical CCS Operation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC PLATE CURRENT</td>
<td>4.5 max. amp</td>
</tr>
<tr>
<td>DC GRID-No.1 CURRENT</td>
<td>1 max. amp</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>25000 max. watts</td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>500 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>17000 max. watts</td>
</tr>
</tbody>
</table>

RF POWER AMPLIFIER — Class C Telegraphy

RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCS* Ratings, Absolute Values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC PLATE VOLTAGE</td>
<td>9000 max. volts</td>
</tr>
<tr>
<td>DC PLATE-SUPPLY VOLTAGE</td>
<td>10000 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 (SCREEN-GRID) VOLTAGE</td>
<td>1100 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 SUPPLY VOLTAGE</td>
<td>1200 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.1 (CONTROL-GRID) VOLTAGE</td>
<td>-250 max. volts</td>
</tr>
<tr>
<td>DC PLATE CURRENT</td>
<td>7 max. amp</td>
</tr>
<tr>
<td>DC GRID-No.1 CURRENT</td>
<td>0.5 max. amp</td>
</tr>
<tr>
<td>PLATE INPUT</td>
<td>60000 max. watts</td>
</tr>
<tr>
<td>GRID-No.2 INPUT</td>
<td>750 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION</td>
<td>35000 max. watts</td>
</tr>
</tbody>
</table>

Typical CCS Operation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Plate Voltage</td>
<td>5000 volts</td>
</tr>
<tr>
<td>DC Grid-No.2 Voltage</td>
<td>800 volts</td>
</tr>
<tr>
<td>DC Grid-No.1 Voltage</td>
<td>-180 volts</td>
</tr>
<tr>
<td>Peak RF Grid-No.1 Voltage</td>
<td>210 volts</td>
</tr>
<tr>
<td>DC Plate Current</td>
<td>4.25 amp</td>
</tr>
<tr>
<td>DC Grid-No.2 Current (Approx.)</td>
<td>0.4 amp</td>
</tr>
<tr>
<td>DC Grid-No.1 Current (Approx.)</td>
<td>0.1 amp</td>
</tr>
<tr>
<td>Driver Power Output (Approx.)</td>
<td>300 watts</td>
</tr>
<tr>
<td>Output-Circuit Efficiency (Approx.)</td>
<td>90 %</td>
</tr>
<tr>
<td>Useful Power Output (Approx.)</td>
<td>10000 watts</td>
</tr>
</tbody>
</table>

2-59

*OE3O:

DATA 3

See next page.

Data 3

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
BEAM POWER TUBE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>At 400 Mc</th>
<th>At 900 Mc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Grid-No.1 Current (Approx.)</td>
<td>0.2</td>
<td>0.25 amp</td>
</tr>
<tr>
<td>Driver Power Output (Approx.)</td>
<td>300</td>
<td>750 watts</td>
</tr>
<tr>
<td>Output-Circuit Efficiency (Approx.)</td>
<td>90</td>
<td>80 %</td>
</tr>
<tr>
<td>Useful Power Output (Approx.)</td>
<td>25000**</td>
<td>13500** watts</td>
</tr>
</tbody>
</table>

* To avoid undue thermal stresses in the filament, it is essential that the filament voltage be raised gradually to operating value in not less than 30 seconds. When the filament voltage is removed, it should be reduced gradually from the normal operating value to zero voltage in not less than 30 seconds.

** Minimum operating value. The life of the tube can be conserved by operating the filament at the lowest power, within the operating filament-voltage range, which will enable the tube to provide the desired power output. Because the filament when operated near the maximum value provides emission in excess of any requirements within the tube ratings, the filament power must be reduced to a value that will give adequate but not excessive emission for any particular application. Good regulation of the filament power supply is in general economically advantageous from the viewpoint of tube life. During standbys, the filament may be operated at 1.08 volts.

*** Directly across cooled element at water connection for the indicated typical flow.

- Continuous Commercial Service.
- Maximum voltage ratings apply for pressures down to 25 inches of mercury (altitudes up to 5000 feet) at 25°C.
- In the vicinity of 550 Mc, it may be necessary to provide means for balancing out a circumferential TE11 mode.
- Obtained preferably from a separate source.

- The driver stage is required to supply tube losses, rf-circuit losses, and rf "swamping-power" losses. "Swamping" may be required in practical circuit design to obtain the desired input-circuit bandwidth. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

- This value of useful power is measured at load with output circuit having indicated efficiency.
- Continuous blanking level + sync pulses.
- Between the half-power points as measured in the output circuit.
- This value includes 300 watts of rf "swamping power".
- This value includes 100 watts of rf "swamping power".
- For 100% modulation of plate voltage, and 50% modulation of grid-No.2 voltage.

- The driver stage is required to supply tube losses and rf-circuit losses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.
- Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
- Obtained preferably from a separate source or from the plate-supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should not be used if the 6806 or a preceding stage is keyed. In this case, the regulation of the source should be sufficient to prevent the grid-No.2 voltage from rising above 1200 volts under key-up conditions; and additional fixed grid-No.1 bias must be provided to limit the plate current.
- Obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

** ELECTRON TUBE DIVISION **

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY **

DATA 3 **

2-59 **
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Current per Section.</td>
<td>1</td>
<td>950</td>
<td>1050</td>
</tr>
<tr>
<td>Filament Current per Section.</td>
<td>2</td>
<td>985</td>
<td>1095</td>
</tr>
<tr>
<td>Filament-Current Differential Between Sections</td>
<td>1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Filament-Voltage Differential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sections.</td>
<td>3</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Grid-No.1 Voltage</td>
<td>1,4</td>
<td>-180</td>
<td></td>
</tr>
</tbody>
</table>

Useful Power Output:

Class B Television Service—
 Synchronizing-level conditions

 Class C Telegraphy—
 Key-down conditions

Power Gain

Note 1: With 1.35 volts rms per filament section.
Note 2: With 1.5 volts rms per filament section.
Note 3: With 1000 amperes per filament section.

Note 4: With 2-phase excitation of the filament sections, dc plate volts = 8500, dc grid-No.2 volts = 1000, and dc grid-No.1 voltage adjusted to give a dc plate current of 0.25 amperes.

Note 5: With 2-phase excitation of the filament sections. In rf power amplifier circuit having a bandwidth of 7 Mc as defined by the half-power points and with dc plate volts = 8750, dc grid-No.2 volts = 1000, dc grid-No.1 voltage adjusted to give a zero-signal dc plate current of 0.25 amperes, drive adjusted to give synchronizing-level dc plate current of 3 amperes, and frequency (Mc) = 550.

Note 6: With 2-phase excitation of the filament sections. In rf power amplifier circuit, and with dc plate volts = 8500, dc grid-No.2 volts = 1000, dc grid-No.1 voltage adjusted to give a zero-signal dc plate current of 0.25 amperes, drive adjusted to give dc plate current of 3 amperes, and frequency (Mc) = 550.

Note 7: With driving power measured at input to input-cavity circuit fed by transmission line having voltage-standing-wave ratio not greater than 1.5. Power gain is ratio of useful power output to driving power.

Indicates a change.
NOTE 1: TERMINAL HAS 1" - 16 UNIFIED THREAD CLASS 2A FIT, 0.38" LONG AND 2 HOLES 0.258" - 0.270" DIAMETER SPACED 0.438" ON CENTERS.

NOTE 3: THE WATER CONNECTION FOR THE PLATE HAS 1-3/4" - 16 UNIFIED EXTRA FINE THREAD, CLASS 2A FIT, 0.38" LONG, 2 HOLES 0.508" - 0.522" DIAMETER SPACED 0.688" ON CENTERS AND AN INDEX HOLE 0.160" MAX. DIAMETER SPACED 0.344" FROM THE CENTER OF THE TERMINAL.

NOTE 5: PRESSURE FROM CIRCUIT CONTACTS SHOULD BE EXERTED ONLY OVER 0.31" MAX. LENGTH OF DESIGNATED CONTACT AREAS OF THE PLATE OR GRID-No.1 TERMINALS.

NOTE 6: THE DIAMETER DIMENSION IS HELD ONLY OVER A LENGTH OF 0.31" MIN.

NOTE 7: THIS DIMENSION APPLIES OVER A LENGTH OF 0.50" MIN. AS INDICATED.

NOTE 8: THE CONTACT SURFACES, BA-BA' AND BB-BB', ARE PARALLEL WITHIN 0.06".

NOTE 9: CONTACT OF THE INPUT-END RF CATHODE TERMINAL SHOULD NOT BE MADE AT A DIAMETER SMALLER THAN 4.22".

NOTE 10: TO PREVENT EXCESSIVE STRESS ON THE CERAMIC SEAL, A 15/16" OPEN-END WRENCH MUST BE USED TO PERMIT GRIPPING THE TERMINAL WHEN REMOVING OR TIGHTENING THE WATER CONNECTORS.

NOTE 11: CONTACT OF THE OUTPUT-END RF CATHODE TERMINAL SHOULD NOT BE MADE AT A DIAMETER SMALLER THAN 4.22". THE PRESSURE EXERTED FOR THIS RF CONTACT SHOULD BE LIMITED TO THAT NECESSARY FOR GOOD ELECTRICAL CONTACT. THE MECHANICAL FORCE FOR THE CAVITY SUPPORT SHOULD BE MADE AT A DIAMETER NOT LESS THAN 4.22". ON THE OUTPUT-ENDORF CATHODE TERMINAL, THERE ARE FOUR EQUALLY SPACED 0.180"-DIAMETER HOLES ON A CIRCLE HAVING DIAMETER OF 8.75". THESE HOLES ARE FOR TUBE MANUFACTURING PURPOSES ONLY. ATTENTION IS CALLED TO THE EXISTENCE OF THESE HOLES SO THAT EQUIPMENT DESIGNERS CAN AVOID MAKING ELECTRICAL CONTACT AT POINTS WHICH ARE COINCIDENT WITH THESE HOLES. MECHANICAL CLAMPING DEVICES FOR THE OUTPUT CAVITY SHOULD BE DESIGNED SO AS TO EXERT THEIR CLAMPING FORCE ACROSS THE OUTER EDGE OF THE OUTPUT- HEADER FLANGE.

NOTE 12: SERIAL NUMBER IS LOCATED ON THIS SURFACE BETWEEN DC GRID-No.2 AND FILAMENT-SECTION-No.1 CONNECTIONS.
NOTE 13: CORNERS MAY BE ROUNDED OR CHAMFERED, AS INDICATED IN (A) AND (B), NOT TO EXCEED 0.05".

GAUGE G

2 PINS
.256" +.000"
-.001"
DIA.

.219"±.001"
.438"±.002"

TAPPED FOR 1"-16
UNIFIED THREAD,
CLASS 2B,
.300"-.350" LONG

CYLINDER
(NOTE 1)

PLUG
(NOTE 2)

.910"+.001"
-.000"

.895"+.000"
-.001" DIA.

NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC
WITH UNTAPPED SECTION OF CYLINDER WITHIN .002".
NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL
WITHIN .001".
GAGE G₂

INDEX PIN
.125" ± .001" DIA.

2 PINS
.506" ± .000" ± .001" DIA.

.344" ± .001"
.688" ± .002"

TAPPED FOR 13/4"-16
UNIFIED EXTRA FINE THREAD, CLASS 2B,
.300"-.350" LONG

CYLINDER
(NOTE 1)

.250" ± .001"

PLUG
(NOTE 2)

L625" ± .000" ± .001" DIA.
L660" ± .001" ± .000" DIA.

NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC WITH UNTAPPED SECTION OF CYLINDER WITHIN .002".
NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL WITHIN .001".
TYPICAL FITTING LAYOUT FOR ALL WATER CONNECTIONS
OTHER THAN THAT FOR PLATE

THREADED FOR 1/4-16
CLASS 2B

KNURLED SLEEVE

1/4" O.D. METAL TUBING
TO STANDARD HOSE CONNECTION

2 HOLES .255" DIA.
C'BORE .400" DIA. X .040" DEEP

.438"

.900" DIA.

"O" RING GASKET **

1/4" I.D., 3/8" O.D.

.62"

.250"

.75" DIA.

.12" .06"

92CS-8251R2

** DWG. NO 24849-5, GARLOCK PACKING CO., PALMYRA, N.Y.

For essential design tolerances,
see Gauge G1
TYPICAL FITTING LAYOUT FOR PLATE WATER CONNECTION

INDEX PIN .06" DIA.

1.88" DIA.

.344"

2 HOLES .510" DIA.
C'BORE .720" DIA. X .060" DEEP

.688" DIA.

THREAD FOR 1 3/4"-16
CLASS 2B

.344"

.688"

“O” RING GASKET*

1/2" I.D.; 11/16" O.D.

1.62" DIA.

KNURLED SLEEVE

.12

.06

1/2" O.D. METAL TUBING TO STANDARD HOSE CONNECTION

OUT

IN

1.50" DIA.

.75"

.31"

.10"

92CS-8250R2

*DWG. NO 24849-10, GARLOCK PACKING CO., PALMYRA, N.Y.

For essential design tolerances, see Gauge Gd
TYPICAL PLATE CHARACTERISTICS

$E_f = \text{ADJUSTED TO SIMULATE NORMAL OPERATING CONDITION OF FILAMENT IN UHF SERVICE}$

GRID - N & 2 VOLTS = 1000
TYPICAL CHARACTERISTICS

$E_C = \text{ADJUSTED TO SIMULATE NORMAL OPERATING CONDITION OF FILAMENT IN UHF SERVICE}$

$\text{GRID-\#2 VOLTS = 1000}$

ELECTRON TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY