POWER PENTODE
FOR "ON-OFF" CONTROL APPLICATIONS INVOLVING
LONG PERIODS OF OPERATION UNDER CUTOFF CONDITIONS

GENERAL DATA

Electrical:
Heater, Pure Tungsten, for Unipotential Cathode:
Voltage 6.3 ± 5% ac or dc volts
Current at 6.3 volts .. 0.65 amp
Direct Interelectrode Capacitances
(Approx. with no external shield):
Grid No.1 to Plate 0.125 µf
Grid No.1 to Cathode and Heater 11.5 µf
Plate to Cathode and Heater 5.0 µf
Heater to Cathode 8.5 µf

Characteristics, Class A Amplifier:
Heater Voltage 6.3 volts
Plate Voltage 250 volts
Grid No.3 Connected to Cathode at Socket
Grid-No.2 Voltage 150 volts
Grid-No.1 Voltage -3 volts
Mu-Factor, Grid No.2 to Grid No.1 22
Plate Resistance 90000 ohms
Transconductance 11000 µhos
Plate Current 30 ma
Grid-No.2 Current 7 ma
Maximum Plate Current for grid-No.1
voltage of -12 volts 100 µamp

Mechanical:
Mounting Position Vertical; horizontal operation permitted if
pins No.3 and No.8 are in a vertical plane
Maximum Overall Length 2-5/8"
Maximum Seated Length 2-3/8"
Length, Base Seat to Bulb Top (Excluding tip) 2" ± 3/32"
Maximum Diameter 7/8"
Bulb T-6-1/2
Base Small-Button Noval 9-Pin (JETEC No.E9-1)

BOTTOM VIEW

Pin 1: Cathode
Pin 2: Grid No.1
Pin 3: Grid No.2
Pin 4: Heater
Pin 5: Heater
Pin 6: Plate
Pin 7: Grid No.3, Int. Shield
Pin 8: Grid No.2
Pin 9: Grid No.1

FREQUENCY DIVIDER IN COMPUTER SERVICE
and "ON-OFF" CONTROL SERVICE

Maximum Ratings, Absolute Values:
PLATE VOLTAGE 300 max. volts
GRID-No.3 (SUPPRESSOR) VOLTAGE 0 max. volts

MARCH 1, 1954
TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
TENTATIVE DATA
POWER PENTODE

GRID-No.2 (SCREEN) VOLTAGE 250 max. volts
GRID-No.1 (CONTROL-GRID) VOLTAGE -50 max. volts
PLATE DISSIPATION 7.5 max. watts
GRID-No.2 INPUT 2.5 max. watts
CATHODE CURRENT 50 max. mA

PEAK HEATER-CATHODE VOLTAGE:
 Heater negative with respect to cathode 180 max. volts
 Heater positive with respect to cathode 180 max. volts

BULB TEMPERATURE (At hottest point on bulb surface) 200 max. °C

Maximum Circuit Values:
Grid-No.1-Circuit Resistance:
 For fixed-bias operation 0.1 max. megohm
 For cathode-bias operation 0.5 max. megohm

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current</td>
<td>1</td>
<td>0.61</td>
<td>0.69</td>
</tr>
<tr>
<td>Mu-Factor, Grid No.2 to Grid No.1</td>
<td>1.2</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Plate Current (1)</td>
<td>1.3</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>Plate Current (2)</td>
<td>1.4</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Plate Current (3)</td>
<td>1.5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Grid-No.2 Current</td>
<td>1.4</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Reverse Grid-No.1 Current</td>
<td>1.6</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Heater-Cathode Leakage Current:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater negative with respect to cathode</td>
<td>1.7</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Heater positive with respect to cathode</td>
<td>1.7</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1.4</td>
<td>9000</td>
<td>13000</td>
</tr>
</tbody>
</table>

Note 1: With 6.3 volts ac or dc on heater.
Note 2: With grid No.3 tied to cathode, grid No.2 tied to plate, plate voltage of 150 volts, grid-No.2 voltage of 150 volts, and grid-No.1 voltage of -3 volts.
Note 3: With plate voltage of 50 volts, grid No.3 tied to cathode, grid-No.2 voltage of 100 volts, and grid-No.1 voltage of 0 volts.
Note 4: With plate voltage of 250 volts, grid No.3 connected to cathode, grid-No.2 voltage of 150 volts, and grid-No.1 voltage of -3 volts.
Note 5: With plate voltage of 250 volts, grid No.3 connected to cathode, grid-No.2 voltage of 150 volts, and grid-No.1 voltage of -12 volts.
Note 6: With plate voltage of 250 volts, grid No.3 connected to cathode, grid-No.2 voltage of 150 volts, grid-No.1 supply voltage of -3 volts, and grid-No.1 resistor of 0.25 megohm.
Note 7: With 90 volts dc between heater and cathode.

* DC component must not exceed 90 volts.
AVERAGE PLATE CHARACTERISTICS WITH E_{C2} AS VARIABLE

$E_F = 6.3$ VOLTS
GRID N$\#3$ CONNECTED TO CATHODE
GRID-N$\#1$ VOLTS = 0

GRID-N$\#2$ (I_{C2}) MILLIAMPERES

PLATE MILLIAMPERES (I_B)

0 10 20 30 40 50

0 500 300 200 100

DEC. 8, 1953

TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8150
AVERAGE PLATE CHARACTERISTICS
WITH E_{C1} AS VARIABLE

$E_C = 6.3$ VOLTS
GRID NO. 3 CONNECTED TO CATHODE
GRID NO. 2 VOLTS = 150

GRID NO. 1 (I_{C1}) MILLIAMPERES

PLATE (I_B) OR GRID NO. 2 (I_{C2}) MILLIAMPERES

DEC. 4, 1953
TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM - 8285
AVERAGE CHARACTERISTICS

$E_F = 8.3$ VOLTS
PLATE VOLTS = 300
GRID #3 CONNECTED TO CATHODE

DEC. 4, 1953
TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
AVG RMS PLATE CHARACTERISTICS
TRIODE CONNECTION

$E_f = 6.3$ VOLTS
GRID NO. 3 CONNECTED TO CATHODE
GRID NO. 2 CONNECTED TO PLATE

PLATE MILLIAMPERES
TUBE DEPARTMENT

DEC. 4, 1953
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8286