5819

MULTIPLIER PHOTOTUBE

10-STAGE, HEAD-ON TYPE WITH

1-1/2" SEMI-TRANSPARENT CATHODE AND S-9 RESPONSE

DATA

General:

Spectral Response: S-9

Wave Length of Maximum Response: 4800 ± 500 angstroms

Cathode, Semi-Transparent:

- Shape: Circular
- Window Area: 1.8 sq.in
- Minimum Diameter of Window: 1.5 sq.in

Direct Inter-electrode Capacitances:

- Anode to Dynode No.10: 4.2 µf
- Anode to All Electrodes: 6.5 µf

Overall Length: 5-5/8" ± 3/16"

Seated Length: 4-7/8" ± 3/16"

Maximum Diameter: 2-1/4"

Bulb: T-16

Mounting Position: Any

Base: Medium-Shell Diheptal 14-Pin, Non-Hygroscopic

Basing Designation for BOTTOM VIEW: 14M

Maximum Ratings, Absolute Values:

ANOde-SUPPLY VOLTAGE (DC or Peak AC): 1250 max. volts

SUPPLY VOLTAGE BETWEEN DYNODE No.10 and ANODE (DC or Peak AC): 150 max. volts

PEAK ANODE CURRENT: 7.5 max. ma

AVERAGE ANODE CURRENT: 0.75 max. ma

AMBIENT TEMPERATURE: 75 max. °C

Characteristics:

With 90 volts per dynode stage and 90 volts between dynode No.10 and anode

<table>
<thead>
<tr>
<th>DC Anode Dark Current#</th>
<th>Min.</th>
<th>Av.</th>
<th>Max.</th>
<th>µamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

- Referred to cathode.
- Averaged over any interval of 30 seconds maximum.
- Dark current due to thermionic emission and ion feedback may be reduced by the use of refrigerants.
- For maximum signal-to-noise ratio, operation below 1000 volts is recommended.

JULY 3, 1950

TUBE DEPARTMENT

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA
MULTIPLIER PHOTOTUBE

Sensitivity:
- At 4800 Angstroms: Min. 14900, Av. - µamp/µwatt, Max. 14900
- Luminous:
 - Cathode: Min. 40, Av. - µamp/lumen, Max. 40
 - Anode: Min. 10, Av. 24, Max. 24
- At 0 cps: Min. 10, Av. 24, Max. 24
- At 100 Mc: Min. 21, Av. 21, Max. 21
- Current Amplification: Min. 600000, Av. 600000, Max. 600000
- Equivalent Noise Input: Min. 2 x 10^{-11}, Av. 2 x 10^{-11}, Max. 2 x 10^{-11}

Characteristics:
- With 75 volts per dynode stage and 50 volts between dynode No. 10 and anode

Sensitivity:
- At 4800 Angstroms: Min. 3720, Av. µamp/µwatt, Max. 3720
- Luminous:
 - Cathode: Min. 40, Av. µamp/lumen, Max. 40
 - Anode: at 0 cps: Min. 6, Av. µamp/lumen, Max. 6
- Current Amplification: Min. 150000, Av. 150000, Max. 150000

△ For conditions where a tungsten lamp operated at a filament color temperature of 2870°K is used as a light source. A light flux of 10 micro-lumens from a rectangular aperture approximately 0.6° long and 0.2° wide is projected normal to the center of the cathode. The load resistor has a value of 0.01 megohm. The applied voltages are as indicated.

■ Ratio of anode sensitivity to cathode sensitivity.

* Defined as the value where the rms output current is equal to the rms noise current determined under the following conditions: 90 volts per stage, 25°C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source at 2870°K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

§ For conditions the same as shown under Anode Luminous Sensitivity except that the value of light flux is 0.01 lumen and that 90 volts are applied between cathode and all other electrodes connected together as an anode.

OPERATING NOTES

Performance of the 5819 is affected by magnetic fields. It will be observed with certain orientations of the 5819 that the earth's magnetic field is sufficient to cause a noticeable decrease in the response of the tube. Therefore, it may be desirable to provide magnetic shielding for the 5819, particularly when it is to be used in a strong magnetic field.

SPECTRAL-SENSITIVITY CHARACTERISTIC

Of Phototube having S-9 Response is shown at the front of this Section

-- indicates a change.

JULY 3, 1950

TENTATIVE DATA

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
MULTIPLIER PHOTOTUBE

PHOTOCATHODE DIAMETER
1 1/2" MIN.

2 1/4" MAX.

5 1/16

1/2 R.

3" R.

4 7/8"
± 3/16"

5 5/8"
± 3/16"

T 16 BULB

MEDIUM-SHELL DIHEPTAL 14-PIN BASE

Q OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.

92CS-7232RI

JULY 3, 1950
TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY
CE-7232R1
AVERAGE ANODE CHARACTERISTICS

VOLTS/STAGE=90

LIGHT INTENSITY: MICROAMPERES = 35

100 VOLTS BETWEEN ANODE & DYNODE N810

MAY 16, 1950

TUBE DEPARTMENT
RADION CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7255R2
Photomultiplier Tube

10-Stage, Head-On Type Having
S-11 Spectral Response

For use in the detection and measurement of nuclear radiation and other applications involving low-level light sources

GENERAL
Spectral Response S-11
Wavelength of Maximum Response 4400 ± 500 Å
Cathode, Semitransparent Cesium-Antimony
 Minimum projected area 2.2 in² (14.1 cm²)
 Minimum diameter 1.69 in (4.3 cm)
Window Corning® No.0080, or equivalent
Shape Convexo-Concave
Index of refraction at 4360 angstroms 1.523

Dynodes:
 Substrate Nickel
 Secondary-Emitting Surface Cesium-Antimony
 Structure Circular-Cage, Electrostatic-Focus Type

Direct Interelectrode Capacitances (Approx.):
 Anode to dynode No.10 4.2 pF
 Anode to all other electrodes 6.5 pF
Maximum Overall Length 5.81 in (14.8 cm)
Seated Length 4.88 ± 0.19 in (12.4 ± 0.5 cm)
Maximum Diameter 2.31 in (5.9 cm)
Bulb T16
Base Medium-Shell Diheptal 14-pin
 (JEDEC No.B14-38) Non-hygroscopic
 Socket Eby® No.9709-7, or equivalent
Magnetic Shield JAN® No.S-2004, or equivalent
Operating Position Any
Weight (Approx.) 5.2 oz (174 g)

MAXIMUM RATINGS, Absolute-Maximum Values:
DC Supply Voltage:
 Between anode and cathode 1250 max. V
 Between anode and dynode No.10 250 max. V
 Between consecutive dynodes 250 max. V
 Between dynode No.1 and cathode 300 max. V
Average Anode Current* 0.75 max. mA
Ambient Temperature* 75 max. °C
CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode.

With E = 1000 volts (Except as noted)

<table>
<thead>
<tr>
<th>Anode Sensitivity:</th>
<th>Min.</th>
<th>Typical</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant(^g) at 4400 angstroms</td>
<td>—</td>
<td>8x10(^4)</td>
<td>—</td>
</tr>
<tr>
<td>Luminous(^h) (2870°K)</td>
<td>10</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Cathode Sensitivity:				
Radiant\(^f\) at 4400 angstroms	—	0.040	—	A/W
Luminous\(^k\) (2870°K)	4x10\(^{-5}\)	5x10\(^{-5}\)	—	A/1m

Current with blue light source\(^m\) (2870°K+C.S. No.5-58)	4x10\(^{-8}\)	—	—	A
Quantum Efficiency at 4200 angstroms	—	11.5	—	%
Current Amplification	—	2x10\(^6\)	—	
Anode Dark Current\(^n\)	—	6x10\(^{-9}\)	4x10\(^{-8}\)	A

| Equivalent Anode Dark Current Input\(^n\) | — | 3x10\(^{-10}\) | 2x10\(^{-9}\) | 1m |
| Equivalent Noise Input\(^q\) | — | 1.7x10\(^{-12}\) | — | 1m |

— Made by Corning Glass Works, Corning, NY 14830.
— Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, PA 19144.
— Averaged over any interval of 30 seconds maximum.
— Tube operation at room temperature or below is recommended.
— This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
— Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is
operated at a color temperature of 2870° K and a light input of 10 microlumens is used.

This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 804 lumens per watt.

Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness—Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.

At 4400 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 804 lumens per watt.

Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

At 4400 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 804 lumens per watt.

TERMINAL CONNECTIONS

The base pins of the 5819 fit a diheptal 14-contact socket, such as Eby No.9709-7, or equivalent. The socket should be made of high-grade, low-leakage material.
TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

\[C_1: 0.05 \, \mu F, 20\%, 500 \, \text{volts (dc working), ceramic disc} \]
\[C_2: 0.02 \, \mu F, 20\%, 500 \, \text{volts (dc working), ceramic disc} \]
\[C_3: 0.01 \, \mu F, 20\%, 500 \, \text{volts (dc working), ceramic disc} \]
\[C_4: 0.005 \, \mu F, 20\%, 500 \, \text{volts (dc working), ceramic disc} \]
\[R_1 \text{ through } R_{10}: 390,000 \, \text{ohms, 5\%, 1/2 watt} \]
\[R_{11}: 910,000 \, \text{ohms, 5\%, 1/2 watt} \]

Leads to all capacitors should be as short as possible to minimize inductance effects. The location and spacing of capacitors is critical and may require adjustment for optimum results.

TERMINAL DIAGRAM (Bottom View)

- Pin 1: Dynode No.1
- Pin 2: Dynode No.2
- Pin 3: Dynode No.3
- Pin 4: Dynode No.4
- Pin 5: Dynode No.5
- Pin 6: Dynode No.6
- Pin 7: Dynode No.7
- Pin 8: Dynode No.8
- Pin 9: Dynode No.9
- Pin 10: Dynode No.10
- Pin 11: Anode
- Pin 12: No Connection
- Pin 13: Internal Connection
- Do Not Use
- Pin 14: Cathode
The angle of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Inches</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.81 max.</td>
<td>147.6 max.</td>
</tr>
<tr>
<td>B</td>
<td>4.88 ± .19</td>
<td>123.9 ± 4.7</td>
</tr>
<tr>
<td>C</td>
<td>1.69 min. dia.</td>
<td>42.9 min. dia.</td>
</tr>
<tr>
<td>D</td>
<td>2.31 max. dia.</td>
<td>58.7 max. dia.</td>
</tr>
<tr>
<td>E</td>
<td>3.00 ± 1.00 R.</td>
<td>76.2 ± 25.4 R.</td>
</tr>
<tr>
<td>F</td>
<td>2.00 ± .06 dia.</td>
<td>50.8 ± 1.5 dia.</td>
</tr>
<tr>
<td>G</td>
<td>.312</td>
<td>7.92</td>
</tr>
<tr>
<td>H</td>
<td>.15 ± .05 R.</td>
<td>3.8 ± 1.2 R.</td>
</tr>
<tr>
<td>J</td>
<td>.50 R.</td>
<td>12.7 R.</td>
</tr>
</tbody>
</table>
TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

MAGNETIC FIELD IS PARALLEL TO DYNODE-CAGE AXIS. POSITIVE VALUES ARE FOR LINES OF FORCE FROM LEFT TO RIGHT WITH BASE DOWN AND BASE KEY TOWARD OBSERVER.

DYNODE-NO.1-TO-CATHODE VOLTS=150
EACH-SUCCEEDING-STAGE VOLTS=100
TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

Supplementary voltage (E) across voltage divider providing 1/6 of E between cathode and dynode No. 1, 1/12 of E for each succeeding dynode stage, and 1/12 of E between dynode No. 10 and anode.

Sensitivity: Amperes/Lumen (Color Temp: 2870°K)

Current Amplification

Supply voltage (E) between anode and cathode

92LM-2694
TYPICAL DARK CURRENT AND EADCI CHARACTERISTICS

LUMINOUS SENSITIVITY IS VARYED BY ADJUSTING THE SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER WHICH PROVIDES 1/6 OF E BETWEEN CATHODE AND DYNOE NO. 1; 1/12 OF E FOR EACH SUCCEEDING DYNOE STAGE; AND 1/12 OF E BETWEEN DYNOE NO. 10 AND ANODE.

TUBE TEMPERATURE = 72°C

LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 2870°K.
TYPICAL ANODE CHARACTERISTICS

DYNODE — No. 1 — TO — CATHODE VOLTS = 167
EACH SUCCEEDING DYNODE STAGE VOLTS = 83
LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP
OPERATED AT A COLOR TEMPERATURE
OF 2870° K.
TYPICAL ENI CHARACTERISTICS

DYNODE - No. 1 - TO - CATHODE VOLTS = 167
EACH - SUCCEEDING - DYNODE - STAGE VOLTS = 83
BANDWIDTH: 1 Hz
LIGHT SOURCE: TUNGSTEN AT 2870°K INTERRUPTED AT 90 Hz TO
PRODUCE PULSES ALTERNATING BETWEEN ZERO AND FLUX
VALUE SHOWN FOR ANY GIVEN TUBE TEMPERATURE; "ON" PERIOD
OF PULSE EQUAL TO "OFF" PERIOD: RMS SIGNAL CURRENT * RMS
NOISE CURRENT.

EXTERNAL SHIELD VOLTS RELATIVE TO ANODE VOLTS = -1000