Picture Tube

Short Rectangular Glass Type
Low-Voltage Electrostatic Focus
Aluminized Screen
Magnetic Deflection
With Heater Having Controlled Warm-Up Time

Data

General:

Heater, for Unipotential Cathode:
- Voltage (AC or DC) 6.3 volts
- Current at 6.3 volts 0.45 amp
- Warm-up time (Average) 11 sec

Direct Interelectrode Capacitances:
- Grid No. 1 to all other electrodes 6 \(\mu \)f
- Cathode to all other electrodes ... 5 \(\mu \)f
- External conductive coating to ultor \(\{ 1500 \text{ max. } \mu \)f
- \(\{ 1000 \text{ min. } \mu \)f

Faceplate, Spherical Filterglass
Light transmission (Approx.) 77%
Phosphor (For curves, see front of this Section) **P4—Sulfide Type**
- Aluminized

Fluorescence. White
Phosphorescence White
Persistence Medium Short
Focusing Method Electrostatic
Deflection Method Magnetic

Deflection Angles (Approx.):
- Diagonal 110°
- Horizontal 105°
- Vertical 87°

Electron Gun Type Requiring No Ion-Trap Magnet
Tube Dimensions:
- Overall length 10-11/16" ± 1/4"
- Greatest width 15-5/8" ± 1/8"
- Greatest height 12-3/4" ± 1/8"
- Diagonal 16-9/16" ± 1/8"
- Neck length 3-9/16" ± 1/8"
- Radius of curvature of faceplate
 (External surface) 20-3/4"

Screen Dimensions (Minimum):
- Greatest width 14-3/4"
- Greatest height 11-11/16"
- Diagonal 15-3/4"
- Projected area 155 sq. in.
Weight (Approx.) 10 lbs
Operating Position Any
Cap Recessed Small Cavity (JEDEC No.J1-21)
Bulb J132-1/2 A/B
Socket Ucinite Part No.115446, or equivalent
Base Small-Button Neoeightar 7-Pin, Arrangement 1,
 (JEDEC No.B7-208)
GRID-DRIVE SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode

Maximum and Minimum Ratings, Design-Center Values:

<table>
<thead>
<tr>
<th>ULTOR VOLTAGE</th>
<th>16000 max. volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID-No. 3 (FOCUSBANG) VOLTAGE</td>
<td>12000* min. volts</td>
</tr>
<tr>
<td>GRID-No. 2 VOLTAGE</td>
<td>650 max. volts</td>
</tr>
<tr>
<td>GRID-No. 1 VOLTAGE</td>
<td>550 max. volts</td>
</tr>
<tr>
<td></td>
<td>300 min. volts</td>
</tr>
</tbody>
</table>

GRID-No. 1 VOLTAGE:
Negative-peak value | 200 max. volts
Negative-bias value | 140 max. volts
Positive-bias value | 0 max. volts
Positive-peak value | 2 max. volts

PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode:
During equipment warm-up period not exceeding 15 seconds | 410 max. volts
After equipment warm-up period | 180 max. volts
Heater positive with respect to cathode | 180 max. volts

Equipment Design Ranges:
With any ultor voltage (E_{c1k}) between 12000 and 16000 volts and grid-No. 2 voltage (E_{c2k}) between 400 and 550 volts

Grid-No. 3 Voltage for focus[^x]
0 to 400 volts

Grid-No. 1 Voltage (E_{c1k}) for visual extinction of focused raster.
See Raster-Cutoff-Range Chart for Grid-Drive Service

Grid-No. 1 Video Drive from Raster Cutoff (Black level):
White-level value (Peak positive) | Same value as determined for E_{c1k} except video drive is a positive voltage

Grid-No. 3 Current | -25 to +25 μA
Grid-No. 2 Current | -15 to +15 μA
Field Strength of Adjustable Centering Magnet... 0 to 12 gauss

Examples of Use of Design Ranges:
With ultor voltage of 16000 volts and grid-No.2 voltage of 400 volts
Grid-No.3 Voltage for focus. 0 to 400 volts
Grid-No.1 Voltage for visual extinction of focused raster. -34 to -63 volts
Grid-No.1 Video Drive from Raster Cutoff (Black level):
White-level value. 34 to 63 volts

Maximum Circuit Values:
Grid-No.1-Circuit Resistance. 1.5 max. megohms

CATHODE-DRIVE® SERVICE
Unless otherwise specified, voltage values are positive with respect to grid No.1

Maximum and Minimum Ratings, Design-Center Values:
ULTOR-TO-GRID-No.1 VOLTAGE. 16000 max. volts
GRID-No.3-TO-GRID-No.1 (FOCUSBING) VOLTAGE. 650 max. volts
GRID-No.2-TO-GRID-No.1 VOLTAGE. 690 max. volts
GRID-No.2-TO-CATHODE VOLTAGE. 550 max. volts

CATHODE-TO-GRID-No.1 VOLTAGE:
Positive-peak value 200 max. volts
Positive-bias value 140 max. volts
Negative-bias value 0 max. volts
Negative-peak value 2 max. volts

PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode:
During equipment warm-up period not exceeding 15 seconds. 410 max. volts
After equipment warm-up period. 180 max. volts
Heater positive with respect to cathode. 180 max. volts

Equipment Design Ranges:
With any ultor-to-grid-No.1 voltage (E_{c481}) between 12000 and 16000 volts and grid-No.2-to-grid-No.1 voltage (E_{c281}) between 400 and 690 volts
Grid-No.3-to-Grid-No.1 Voltage for focus§. 0 to 400 volts
Cathode-to-Grid-No.1 Voltage (E_{kg1}) for visual extinction of focused raster. ... See Raster-Cutoff-Range Chart for Cathode-Drive Service

Cathode-to-Grid-No.1 Video Drive from Raster Cutoff (Black level):
White-level value (Peak negative) ... Same value as determined for E_{kg1} except video drive is a negative voltage

Grid-No.3 Current ... -25 to +25 μA
Grid-No.2 Current ... -15 to +15 μA
Field Strength of Adjustable Centering Magnet ... 0 to 12 gaussies

Examples of Use of Design Ranges:
With utlor-to-grid-
No.1 voltage of 16000 volts
and grid-No.2 to-grid-
No.1 voltage of 16000 volts

Grid-No.3 to-Grid-
No.1 Voltage for focus 0 to 400 0 to 400 volts

Cathode-to-Grid-No.1 Voltage for visual extinction of focused raster ... 34 to 56 41 to 69 volts

Cathode-to-Grid-No.1 Video Drive from Raster Cutoff (Black level):
White-level value ... -34 to -56 -41 to -69 volts

Maximum Circuit Values:
Grid-No.1-Circuit Resistance ... 1.5 max. megohms

Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode.

This value is a working design-center minimum. The equivalent absolute minimum utlor- or utlor-to-grid-No.1 voltage is 11,000 volts, below which the serviceability of the 17DXP4 will be impaired. The equipment designer has the responsibility of determining a minimum design value such that under the worst probable operating conditions involving supply-voltage variation and equipment variation the utlor minimum of utlor- or utlor-to-grid-No.1 voltage is never less than 11,000 volts.

The grid-No.3 voltage required for optimum focus of any individual tube may have a value anywhere between 0 and 400 volts and is a function of the value of the utlor voltage, utlor current, and grid-No.2 voltage. It changes directly with the utlor voltage at the rate of approximately 46 volts for each 1000-volt change in utlor voltage; inversely with grid-No.2 voltage at the rate of about 60 volts for each 100-volt change in grid-No.2 voltage; and inversely with utlor current at the rate of about 60 volts for each 100-microampere change in utlor current. Because the 17DXP4 has a narrow depth of focus, it is necessary to provide means such as a potentiometer or a u-tap switch for adjusting the focusing voltage. In general, commercially acceptable focus is obtained if the focusing voltage is within 75 volts of the value required for optimum focus and if the focusing voltage is maintained to within 75 volts of the optimum value during line-voltage fluctuations.
Distance from Reference Line for suitable PM centering magnet should not exceed 2-1/4a. Excluding extraneous fields, the center of the undeflected focused spot will fall within a circle having a 5/16-inch radius concentric with the center of the tube face. It is to be noted that the earth's magnetic field can cause as much as 1/2-inch deflection of the spot from the center of the tube face.

Cathode drive is the operating condition in which the video signal varies the cathode potential with respect to grid No.1 and the other electrodes.

OPERATING CONSIDERATIONS

Shatter-Proof Cover Over the Tube Face. Following conventional picture-tube practice, it is recommended that the cabinet be provided with a shatter-proof, glass cover over the face of the 17DXP4 to protect it from being struck accidentally and to protect against possible damage resulting from tube implosion under some abnormal condition. This safety cover can also provide X-ray protection when required.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JEDEC NO. G-126 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. THE DESIGN OF THE SOCKET SHOULD BE SUCH THAT THE CIRCUIT WIRING CANNOT IMPRESS LATERAL STRAINS THROUGH THE SOCKET CONTACTS ON THE BASE PINS. BOTTOM CIRCUMFERENCE OF BASE WAFER WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 1-3/4".

NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINTLESS CLOTH.

NOTE 6: MEASURED 2-9/32" ± 1/32" FROM THE PLANE TANGENT TO THE SURFACE OF THE FACEPLATE AT THE TUBE AXIS.

NOTE 7: BULGE AT SPlice-LINE SEAL MAY INCREASE THE INDICATED MAXIMUM VALUE FOR ENVELOPE WIDTH, DIAGONAL, AND HEIGHT BY NOT MORE THAN 1/4", BUT AT ANY POINT AROUND THE SEAL, THE BULGE WILL NOT PROTRUDE MORE THAN 1/8" BEYOND THE ENVELOPE SURFACE AT THE LOCATION SPECIFIED FOR DIMENSIONING THE ENVELOPE WIDTH, DIAGONAL, AND HEIGHT.

NOTE 8: THE TUBE SHOULD BE SUPPORTED ON BOTH SIDES OF THE BULGE. THE MECHANISM USED SHOULD PROVIDE CLEARANCE FOR THE MAXIMUM DIMENSIONS OF THE BULGE. SUPPORTS MUST BE SPACED FROM THE TUBE BY THE USE OF CUSHIONING PADS MADE OF MATERIAL SUCH AS ASPHALT-IMPREGNATED FELT, OR EQUIVALENT.

NOTE 9: NECK DIAMETER IS MAINTAINED TO AT LEAST 2-7/16" FROM REFERENCE LINE.
RASTER-CUTOFF-RANGE CHARTS
Grid-Drive Service

$E_p = 6.3$ VOLTS
ULTOR VOLTS = 12000 TO 16000
GRID-N#3 VOLTS ADJUSTED FOR FOCUS.

Cathode-Drive Service

$E_p = 6.3$ VOLTS
ULTOR-TO-GRID-N#1 VOLTS = 12000 TO 16000
GRID-N#3-TO-GRID-N#1 VOLTS ADJUSTED FOR FOCUS.