110° TELEVISION PICTURE TUBE WITH INTEGRAL PROTECTION

Direct viewing television picture tube with metal backed screen, electrostatic focusing, 110° magnetic deflection and with an integral protection against dangerous mechanical tube failures, so that no separate safety panel is required. The tube is provided with four metal mounting lugs to facilitate mounting into the cabinet.

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage \(V_f = 6.3 \) V

Heater current \(I_f = 0.3 \) A

If the tube is used in a series heater chain the surge heater voltage should not exceed 9.5 V (R.M.S.) when the supply is switched on. If necessary, a current limiting device must be used to ensure that this value is not exceeded.

CAPACITANCES

Grid No.1 to all other electrodes \(C_{g1} = 6 \) pF

Cathode to all other electrodes \(C_k = 4 \) pF

External conductive coating to final accelerating electrode

\(C_{m-a,g3,g5} > 1000 \) pF

\(C_{m-a,g3,g5} < 1500 \) pF

Metal band to final accelerating electrode \(C_{m'-a,g3,g5} = 250 \) pF

SCREEN

- Metal backed
- Luminescence white
- Light transmission 56%
- Useful diagonal min. 446 mm
- Useful width min. 384 mm
- Useful height min. 305 mm

For curves of the screen properties please refer to front of this section.
Dimensions in mm

Base: Small-button neo eightar

Mounting position: any

Net weight 7.5 kg

The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

The bottom circumference of the base wafer will lie within a circle concentric with the bulb axis and having a diameter of 40 mm.

1) ... 13) See page 5.
REFERENCE LINE GAUGE

Dimensions in mm

If x and y are expressed in inches, the parabolic formula for the inner contour reads $y = 0.58x^2 + 0.576$

The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.

FOCUSBING electrostatic
DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 99°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the axis for centring of the picture should be adjustable from 0 to 10 Oersteds.

Distance between centre of the field of the magnet and the reference line max. 57 mm.

The centring magnet should be mounted as close to the deflection coils as possible.
Notes from pages 2 and 3

1) Opening of metal rim band (see detail A). Eccentricity with respect to centre of screen max. 1.5 mm.

2) The position of the mounting screw in the cabinet will be within a circle of 8.5 mm diameter.

3) Opening of coating at end of free zone.

4) Meniscus of resin filler on screen.

5) Small cavity contact.

6) End of free zone. The maximum contour from reference line towards screen is given by the reference line gauge (18.13 mm).

7) The mounting lug is situated within this distance.

8) The screen radius of 533.5 mm applies outside the centre area of the screen.

9) The screen radius of 1219 mm applies to the centre area of the screen.

10) This area must be kept clean.

11) The deviation of any lug with respect to the plane through the other three lugs is max. 2 mm.

12) 8 tags for earthing the rim band. The metal rim band must be earthed by means of these tags. No electrical contact between the band and the mounting lugs can be guaranteed.

13) The configuration of the external conductive coating is optional but contains the contact area shown in the drawing. The external conductive coating must be earthed.

7Z2 2143
MAXIMUM CONE CONTOUR DRAWING (dimensions in mm)
See also page 7
MAX. CONE CONTOUR DRAWING (continued)

Dimensions (in mm) are given as maximum values, unless otherwise specified.

<table>
<thead>
<tr>
<th>Section</th>
<th>Long axis</th>
<th>Diagonal</th>
<th>Short axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
<td>10°</td>
<td>20°</td>
</tr>
<tr>
<td>1</td>
<td>18.3</td>
<td>82.5</td>
<td>82.5</td>
</tr>
<tr>
<td>2</td>
<td>24.2</td>
<td>111.2</td>
<td>111.2</td>
</tr>
<tr>
<td>3</td>
<td>29.2</td>
<td>128.5</td>
<td>128.5</td>
</tr>
<tr>
<td>4</td>
<td>34.2</td>
<td>142.2</td>
<td>141.1</td>
</tr>
<tr>
<td>5</td>
<td>39.2</td>
<td>152.1</td>
<td>151.1</td>
</tr>
<tr>
<td>6</td>
<td>49.2</td>
<td>166.7</td>
<td>166.6</td>
</tr>
<tr>
<td>7</td>
<td>59.2</td>
<td>178.1</td>
<td>178.6</td>
</tr>
<tr>
<td>8</td>
<td>69.2</td>
<td>187.5</td>
<td>188.3</td>
</tr>
<tr>
<td>9</td>
<td>79.2</td>
<td>195.4</td>
<td>196.6</td>
</tr>
<tr>
<td>10</td>
<td>89.2</td>
<td>202.1</td>
<td>203.9</td>
</tr>
<tr>
<td>11</td>
<td>99.2</td>
<td>208.4</td>
<td>210.4</td>
</tr>
<tr>
<td>12</td>
<td>109.2</td>
<td>213.6</td>
<td>216.1</td>
</tr>
<tr>
<td>13</td>
<td>117.7</td>
<td>215.75</td>
<td>218.21</td>
</tr>
</tbody>
</table>

A47-11W

PHILIPS
GRID DRIVE SERVICE

Voltages are specified with respect to the cathode.

OPERATING CHARACTERISTICS

Final accelerator voltage \(V_{a, g_3, g_5} = 18 \) 18 kV
Grid No.2 voltage \(V_{g_2} = 400 \) 500 V
Grid No.4 voltage \(V_{g_4} = 0 \) to 400 0 to 400 V 1)

Negative grid No.1 voltage for visual extinction of focused raster \(-V_{g_1} = 40 \) to 77 50 to 93 V

LIMITING VALUES (Design centre limits)

Final accelerator voltage at \(I_a, g_3, g_5 = 0 \) \(\mu A \) \(V_{a, g_3, g_5} = \text{max.} \) 18 kV
Final accelerator voltage \(V_{a, g_3, g_5} = \text{min.} \) 11 kV 2)

Grid No.4 voltage
positive value \(V_{g_4} = \text{max.} \) 1000 V
negative value \(-V_{g_4} = \text{max.} \) 500 V
peak positive value \(V_{g_4 \ p} = \text{max.} \) 2500 V 3)

Grid No.2 voltage \(V_{g_2} = \text{min.} \) 350 V

Grid No.1 voltage
negative value \(-V_{g_1} = \text{max.} \) 150 V
positive value \(+V_{g_1} = \text{max.} \) 0 V
peak negative value \(-V_{g_1 \ p} = \text{max.} \) 400 V 3)
peak positive value \(+V_{g_1 \ p} = \text{max.} \) 2 V

1) Voltage range necessary for optimum overall focus at 100\(\mu \)A beam current.
2) Absolute limit.
3) Maximum pulse duration = 22\% of a cycle, but maximum 1.5 msec.

7Z2 2055
LIMITING VALUES (Design centre limits) (continued)

Cathode to heater voltage

- cathode positive \(V_{kf} \) (k pos) = max. 250 V
- cathode negative \(V_{kf} \) (k neg) = max. 135 V
- peak value, cathode positive \(V_{kfp} \) (k pos) = max. 300 V
- peak value, cathode negative \(V_{kfp} \) (k neg) = max. 180 V

CATHODE DRIVE SERVICE

Unless otherwise stated, voltages are with respect to grid No. 1.

OPERATING CHARACTERISTICS

- Final accelerator voltage \(V_{a, g3, g5} = 18 \) 18 kV
- Grid No.2 voltage \(V_{g2} = 400 \) 500 V
- Grid No.4 voltage \(V_{g4} = 0 \) to 400 \(V \) 0 to 400 V
- Cathode voltage for visual extinction of focused raster \(V_k = 36 \) to 66 \(V \) 45 to 79 V

1) Voltage range necessary for optimum overall focus at 100\(\mu \)A beam current.

5) In order to avoid excessive hum the A.C. component of the heater to chassis voltage should be as low as possible and must not exceed 20 V (R.M.S.).

6) During an equipment warm-up period not exceeding 15 sec \(V_{kf} \) is allowed to rise to 410 V. Between 15 and 45 seconds after switching on a decrease in \(V_{kf} \) proportional with time from 410 V to 250 V is permissible.

7Z2 2056
CATHODE DRIVE SERVICE (continued)

Unless otherwise stated, voltages are with respect to grid No. 1.

LIMITING VALUES (Design centre limits)

Final accelerator voltage at
\[I_{a,g_3,g_5} = 0 \mu A \]
\[V_{a,g_3,g_5} = \text{max.} \quad 18 \text{ kV} \]
Final accelerator voltage
\[V_{a,g_3,g_5} = \text{min.} \quad 11 \text{ kV} \]

Grid No. 4 voltage
- positive value
 \[V_{g_4} = \text{max.} \quad 1000 \text{ V} \]
- negative value
 \[-V_{g_4} = \text{max.} \quad 500 \text{ V} \]
- peak positive value
 \[V_{g_4,p} = \text{max.} \quad 2500 \text{ V} \]

Grid No. 2 voltage
\[V_{g_2} = \text{max.} \quad 700 \text{ V} \]

Grid No. 2 to cathode voltage
\[V_{g_2-k} = \text{max.} \quad 550 \text{ V} \]
\[V_{g_2-k} = \text{min.} \quad 350 \text{ V} \]

Cathode voltage
- positive value
 \[V_k = \text{max.} \quad 150 \text{ V} \]
- negative value
 \[-V_k = \text{max.} \quad 0 \text{ V} \]
- peak positive value
 \[V_{k_p} = \text{max.} \quad 400 \text{ V} \]
- peak negative value
 \[-V_{k_p} = \text{max.} \quad 2 \text{ V} \]

Cathode to heater voltage
- cathode positive
 \[V_{k_f} (\text{k pos}) = \text{max.} \quad 250 \text{ V} \]
- cathode negative
 \[V_{k_f} (\text{k neg}) = \text{max.} \quad 135 \text{ V} \]
- peak value, cathode positive
 \[V_{k_f,p} (\text{k pos}) = \text{max.} \quad 300 \text{ V} \]
- peak value, cathode negative
 \[V_{k_f,p} (\text{k neg}) = \text{max.} \quad 180 \text{ V} \]

2) Absolute limit.
3) Maximum pulse duration = 22\% of a cycle, but maximum 1.5 msec.
4) At max. beam current \((V_k-g_1 = 0 \text{ V})\)
5)6) See page 7.
CIRCUIT DESIGN VALUES for both grid drive service and cathode drive service

Positive grid No.4 current \(I_{g4} \) = max. 25 \(\mu A \)
Negative grid No.4 current \(-I_{g4}\) = max. 25 \(\mu A \)
Positive grid No.2 current \(I_{g2} \) = max. 5 \(\mu A \)
Negative grid No.2 current \(-I_{g2}\) = max. 5 \(\mu A \)

MAX. CIRCUIT VALUES for both grid drive service and cathode drive service

Grid No.1 circuit resistance \(R_{g1} \) = max. 1.5 M\(\Omega \)
Grid No.1 circuit impedance \(Z_{g1} (f = 50 \text{ c/s}) \) = max. 0.5 M\(\Omega \)
Resistance between cathode and heater \(R_{kf} \) = max. 1 M\(\Omega \)
Impedance between cathode and heater \(Z_{kf} (f = 50 \text{ c/s}) \) = max. 0.1 M\(\Omega \)
Grid drive

\[V_{g3g5} = 11-18 \text{kV} \]
Cathode drive
Voltages with respect to g_1
$V_{a,g3,g5} = 11-18\,kV$
\(V_{g1, g3, g5} = 11 - 18 \text{kV} \)

grid - drive

Date: 2.2.1964

Page: P12
$V_{a,g3,g5} = 11 - 18 \, kV$

cathode - drive

Diagram showing the relationship between V_{k-g1} (V) and V_{g2-g1} (V). The diagram includes upper and lower limits.
<table>
<thead>
<tr>
<th>page</th>
<th>sheet</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
<td>1964.02.02</td>
</tr>
<tr>
<td>16</td>
<td>FP</td>
<td>2000.03.06</td>
</tr>
</tbody>
</table>