31B81
CATHODE RAY TUBE—ALL ELECTROSTATIC 3½” DIA.
Post Deflection Acceleration
For High Precision Instruments

GENERAL
The 31B81 is a flat screen Cathode Ray Tube with post-deflection acceleration. It is suitable for high precision instruments.

RATING
Heater Voltage \(V_h \) 6.3 V
Heater Current \(I_h \) 0.5 A
Maximum Final Anode Voltage \(V_a4(max) \) 8 kV
Minimum Final Anode Voltage \(V_a4(min) \) 2 kV
Maximum Third Anode Voltage \(V_a3(max) \) 4 kV
Minimum Third Anode Voltage \(V_a3(min) \) 1 kV
Maximum Second Anode Voltage \(V_a2(max) \) 2 kV
Maximum First Anode Voltage \(V_a1(max) \) 2.5 kV
Minimum First Anode Voltage \(V_a1(min) \) 1 kV
Maximum Negative Grid Voltage \(V_g(max) \) -200 V
Minimum Negative Grid Voltage (cathode hot) \(V_g(min) \) 0 V
Maximum Positive Grid Voltage (cathode cold) \(V_g(max) \) 200 V
Maximum X1 Plate/X2 Plate Voltage \(V_x1-x2(max) \) 1 kV
Maximum Y1 Plate/Y2 Plate Voltage \(V_y1-y2(max) \) 1 kV
Maximum Heater/Cathode Voltage \(V_h-k(max) \) 150 V
Maximum X Plate/Third Anode Resistance \(R_x-a3(max) \) 5 MΩ
Maximum Y Plate/Third Anode Resistance \(R_y-a3(max) \) 5 MΩ
Maximum Grid/Cathode Resistance \(R_g-k(max) \) 2 MΩ
Minimum Heater/Cathode Resistance \(r_h-k(min) \) 2 MΩ
Minimum Grid/Cathode Resistance \(r_g-k(min) \) 10 MΩ

* The Grid must not become positive with respect to cathode.
† Heater 100V negative to cathode.
31B81

CATHODE RAY TUBE—ALL ELECTROSTATIC 3½" DIA.
Post Deflection Acceleration
For High Precision Instruments

INTER-ELECTRODE CAPACITANCES (pF)

<table>
<thead>
<tr>
<th>Electrode Configuration</th>
<th>Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode/All other electrodes</td>
<td>C_{k-all}</td>
</tr>
<tr>
<td>Grid/All other electrodes</td>
<td>C_{g-all}</td>
</tr>
<tr>
<td>X1 Deflecting Plate/X2</td>
<td>C_{x1-x2}</td>
</tr>
<tr>
<td>Y1 Deflecting Plate/Y2</td>
<td>C_{y1-y2}</td>
</tr>
<tr>
<td>X1 Deflecting Plate/All other electrodes except X2</td>
<td>C_{x1-all, less x2}</td>
</tr>
<tr>
<td>X2 Deflecting Plate/All other electrodes except X1</td>
<td>C_{x2-all, less x1}</td>
</tr>
<tr>
<td>Y1 Deflecting Plate/All other electrodes except Y2</td>
<td>C_{y1-all, less y2}</td>
</tr>
<tr>
<td>Y2 Deflecting Plate/All other electrodes except Y1</td>
<td>C_{y2-all, less y1}</td>
</tr>
<tr>
<td>Y1 Deflecting Plate/X1 or X2 Deflecting Plate (approx.)</td>
<td>C_{y1-x1 or x2}</td>
</tr>
<tr>
<td>Y2 Deflecting Plate/X1 or X2 Deflecting Plate (approx.)</td>
<td>C_{y2-x1 or x2}</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

Second Anode Voltage
(focus anode) $V_{a2} = 350$ V

Grid Bias Voltage for cut off at
- $V_{a1} = 1$ kV $V_g = -35$ V
- $V_{a1} = 2$ kV $V_g = -70$ V
- $V_{a1} = 2.5$ kV $V_g = -87$ V

X Plate Sensitivity ($V_{a4} = V_{a3}$) $S_x = \frac{800}{V_{a3}}$ mm/V

Y Plate Sensitivity ($V_{a4} = V_{a3}$) $S_y = \frac{520}{V_{a3}}$ mm/V

X Plate Sensitivity ($V_{a4} = 2V_{a3}$) $S_x = \frac{620}{V_{a3}}$ mm/V

Y Plate Sensitivity ($V_{a4} = 2V_{a3}$) $S_y = \frac{400}{V_{a3}}$ mm/V

Grid Voltage (Drive) at $I_{a4} = 25$ μA, $V_{a1} = 2$ kV $V_g < 32$ V

December, 1961

Associated Electrical Industries Limited
Electronic Components Division
Tel.: GERrard 9797
CATHODE RAY TUBE—ALL ELECTROSTATIC 3½" DIA.
Post Deflection Acceleration
For High Precision Instruments

The undeflected spot will fall within a circle of 5 mm radius from the centre of the tube face.
The plate sensitivity for a deflection of less than 75% of the useful scan will not differ from that for 25% by more than 2%.
The edges of a raster with mean dimensions which are 75% of the useful scan will not deviate from the mean rectangle by more than 2½%.
The minimum useful screen area is a circle of 3·7 cm radius.
Orthogonality of deflection axes is ±1%.

DEFLECTION DISTORTION

In any Cathode Ray Tube using a simple post-deflection accelerator, the application of the accelerating potential results in deflection distortion, which becomes more pronounced as the ratio of V_{a4}/V_{a3} is increased.

It is recommended that for work involving the measurement of relative deflection amplitudes directly on the tube face this ratio should not exceed 2 : 1.

ORIENTATION

Looking at the screen with the spigot key upward, a positive potential applied to X1 will deflect the spot to the left and a positive potential applied to Y1 will deflect the spot upward.

MAGNETIC SHielding

The magnetic shield should be of high permeability material, of a thickness determined by the magnetic field at the tube position. The shield should be earthed. To obtain optimum results equipment containing Cathode Ray Tubes should always be designed to minimise the magnetic field around the tubes, as magnetic shielding can never be completely effective. In addition to the more obvious deflection effects of alternating fields, steady magnetic fields from smoothing chokes, magnetised steel components, etc., can produce spot distortion or low gun efficiency.
31B81
CATHODE RAY TUBE—ALL ELECTROSTATIC 3 1/2" DIA.
Post Deflection Acceleration
For High Precision Instruments

DIMENSIONS
Maximum Overall Length 360mm
Maximum Screen Diameter 92mm
Maximum Neck Diameter 52mm

MOUNTING
The tube should not be supported by the base alone, but
should preferably be held in a rubber-lined clamping ring at
the screen end together with a similar clamp round the
magnetic screen close to the base.
The socket should have sufficient freedom of movement to
accommodate the tube overall length tolerance and a small
amount of lateral float to ensure good pin contact without
straining the base.

SCREEN PHOSPHORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Colour</th>
<th>Persistence</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Green</td>
<td>Medium</td>
<td>Visual</td>
</tr>
<tr>
<td>T3</td>
<td>Blue Actinic</td>
<td>Short</td>
<td>Photographic</td>
</tr>
<tr>
<td>T4</td>
<td>White</td>
<td>Medium Short</td>
<td>Visual/Photographic</td>
</tr>
<tr>
<td>T6</td>
<td>Yellow Afterglow</td>
<td>Long</td>
<td>Visual</td>
</tr>
<tr>
<td>T7</td>
<td>Orange Afterglow</td>
<td>Very Long</td>
<td>Visual</td>
</tr>
</tbody>
</table>

TYPICAL OPERATION

Final Anode Voltage V_a4 4 kV
Third Anode Voltage V_a3 2 kV
Second Anode Voltage V_a2 350 V
First Anode Voltage V_a1 2 kV
Grid Voltage V_g -60 V
Third Anode Current I_a3 1 μA
Final Anode Current I_a4 2 μA

The Line width at I_{screen} = 0.5 μA is 0.3mm measured on a
circle 50mm diameter.

December, 1961

Associated Electrical Industries Limited
Electronic Components Division
Tel.: GERrard 9797
31B81
CATHODE RAY TUBE—ALL ELECTROSTATIC 3½" DIA.
Post Deflection Acceleration
For High Precision Instruments

SIDE CONTACT—CT8

BASE—B14A (Diheptal)

VIEWED FROM FREE END OF PINS.

CONNECTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heater</td>
<td>h</td>
</tr>
<tr>
<td>2</td>
<td>Cathode</td>
<td>k</td>
</tr>
<tr>
<td>3</td>
<td>Grid</td>
<td>g</td>
</tr>
<tr>
<td>4</td>
<td>First Anode</td>
<td>a1</td>
</tr>
<tr>
<td>5</td>
<td>Second Anode</td>
<td>a2</td>
</tr>
<tr>
<td>6</td>
<td>No pin</td>
<td>NP</td>
</tr>
<tr>
<td>7</td>
<td>Deflector Plate Y1</td>
<td>Y1</td>
</tr>
<tr>
<td>8</td>
<td>Deflector Plate Y2</td>
<td>Y2</td>
</tr>
<tr>
<td>9</td>
<td>Third Anode</td>
<td>a3</td>
</tr>
<tr>
<td>10</td>
<td>Deflector Plate X2</td>
<td>x2</td>
</tr>
<tr>
<td>11</td>
<td>Deflector Plate X1</td>
<td>x1</td>
</tr>
<tr>
<td>12</td>
<td>No Connection</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>No Pin</td>
<td>NP</td>
</tr>
<tr>
<td>14</td>
<td>Heater</td>
<td>h</td>
</tr>
<tr>
<td>Cap</td>
<td>Final Anode</td>
<td>a4</td>
</tr>
</tbody>
</table>
31B81
CATHODE RAY TUBE—ALL ELECTROSTATIC 3½ DIA.
Post Deflection Acceleration
For High Precision Instruments

All Dimensions in mm.

December, 1961
ADVANCE DATA, Page 6

Associated Electrical Industries Limited
Electronic Components Division
Tel.: GERrard 9797